INFLUENCE OF Ti MICROALLOYING ON ZAMAK-5

INFLUENCE OF Ti MICROALLOYING ON ZAMAK-5

ZAMAK-5 is a Zn-Al alloy which contains 3.9-4.3 % Al, 0.75-1.25 % Cu and 0.03-0.06 % Mg. Low melting temperature and good castability are some of the advantages of ZAMAK-5. In the present study, the composition of ZAMAK-5 alloy was modified by microalloying it with Ti. Alloying was accomplished by melting ZAMAK-5 at 450 and 650 oC and introducing Ti as Al10Ti master alloy. It was found by ICP analyses that modified alloys contained 0.01 and 0.03 wt.% Ti. Re-melting and casting of the alloyed samples were conducted at 650 oC under argon atmosphere. The modified alloy that contained 0.03 % Ti had near eutectic Zn-Al composition due to the increased amount of Al. The increase in the Al content was caused by master alloy addition. According to microstructural and solidification analyses, the modified alloy that contained 0.03 % Ti had lower liquidus temperature and less primary (η) dendrites in its microstructure. Alloying with Ti was found to increase hardness and bending strength of the base alloy. Alloy that was modified with 0.03 % Ti exhibited the highest hardness (102.3±2.8 HB10), compressive yield strength (290.0±5.0 MPa) and bending strength (661.4±30.5 MPa).

___

  • [1] Goodwin, E. F., and Pnikvar A. L. (1998). Engineering Properties of Zinc Alloys (3rd edition). USA: International Lead Zinc Research Organization, Inc., 1-9.
  • [2] Campbell, J. (2011). Casting Handbook (1st edition). England: Elsevier Ltd., 255-260.
  • [3] Barnhurst, R. J. (1990). ASM Handbook Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose. USA: ASM International, 1619.
  • [4] Murray, J. L. (1983). The Al−Zn (aluminum-zinc) system. Bulletin of Alloy Phase Diagrams, 4, 55-73.
  • [5] Azizi, A., and Haghighi, G. (2015). Fabrication of ZAMAK 2 alloys by powder metallurgy process. The International Journal of Advanced Manufacturing Technology, 77, 2059-2065.
  • [6] Altınsoy, İ., and Kızılarslan, A. (2016). Effect of Ti addition on microstructure of zamak-3 alloy. Proceedings of the 18th International Metallurgy & Materials Congress.
  • [7] Sandlöbes, S., Wu, Z., Pradeep, K.G., and Korte-Kerzel, S. (2016). Precipitation and decomposition phenomena in a Zn-Al-Cu-Mg alloy. Materials Letters, 175, 27-31.
  • [8] Wu, Z., Sandlöbes, S., Wu, L., Hu, W., Gottstein, G., and Korte-Kerzel S. (2016). Mechanical behavior of Zn–Al–Cu–Mg alloys: Deformation mechanisms of as-cast microstructures. Materials Science and Engineering A, 651, 675-687.
  • [9] Ayday, A., Kurnaz, S. C., Uysal, Ü., and Pehlivan, H. (2023). Effect of boron addition on thermal and mechanical properties of cast ZA12 alloy. International Journal of Metalcasting, 17, 1-12.
  • [10] Umashankar, M., and Annamalai, K. (2017). Investigation on Ni-modified ZA alloy for damping properties. Materials Today: Proceedings, 4, 10134-10137.
  • [11] Veerabhadrappa, A., Kabadi, V. R., Genechari, S. M., and Chavan, V. R. (2017). Influence of Mn content on tribological wear behaviour of ZA-27 alloy. Materials Today: Proceedings, 4, 10927-10934.
  • [12] Abdel-Hamid, A. A. (1992). Structure modification of the α' phase in Zn - Al cast alloys by microalloying. International Journal of Materials Research, 83, 314-320.
  • [13] Morgan, S. W. K. (1985). Zinc and its alloys and compounds (1st edition). England: Ellis Horwood, 245.
  • [14] Houghton, M.E., and Murray, M.T. (1983). An introduction to zinc alloys. Metals Forum, 6, 211-255.
  • [15] Türk, A. (1996). Çinko-alüminyum esaslı ZA-8 alaşımında alaşım elementlerinin mekanik özelliklere ve mikroyapıya etkisi, Yayımlanmamış Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü.
  • [16] Durman, M., and Türk, A. (1996). Yeni çinko-alüminyum esaslı alaşımların geliştirilmesi, Tübitak, Proje No: Misag 41.
  • [17] Aktuna, İ. (2019). İkincil eritmenin zamak alaşımlarının mikroyapı ve mekanik özellikleri üzerindeki etkilerinin incelenmesi, Yayımlanmamış Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü.
  • [18] Vandersluis, E., and Ravindran, C. (2017). Comparison of measurement methods for secondary dendrite arm spacing. Metallography Microstructure & Analysis 6, 89-94.
Journal of Scientific Reports-A-Cover
  • Başlangıç: 2020
  • Yayıncı: Kütahya Dumlupınar Üniversitesi