FiTO-İYİLESTiRME VE METAL BiRiKTiREN BiTKiLER

Fito-iyilestirrne, son yillarda uygun bir cevre-temizleme teknolojisi olarak kabul edilen ve uzerinde yogun bilimsel arastirmalann yapildig. bir alandir, Asin metal biriktirici bitkiler cevredeki metal kirliliginin iyilestirilmesinde buyuk bir potansiyele sahiptir. Bugune kadar yaklasik 400 bitki turunun asin metal biriktiricisi oldugu rapor edilrnistir. Fakat bu bitkilerin cogu kucuk ve yavas buyuyen ttirler oldugundan fitoiyilestirrne cahsrnalan icin uygun degildir, Aynca bitkilerde asm metal birikiminin alunda yatan temel biyokimyasal, fizyolojik ve molektiler mekanizmalar hakkindaki bilgi eksikligi fito-iyilestirrne teknolojisinin ticari amach kullarunuru smrrlamaktadrr. Bu simrlamalara ragmen asm metal biriktirici bitkiler bitki islahi ve genetik muhendisligi cahsrnalan icin bir gen kaynagi teskil etrnektedir. Genetik rnuhendisliginin kullarurruyla metallerin fito-iyilestirrnesinde kullarulabilecek ideal bitki ttirleri tiretilebilir. Bu derlemede fito-iyilestirme teknolojileri ve bu amacla kullarulabilecek asm metal biriktirici bitki ttirlerden bahsedilmis ve bu konudakibiyoteknolojik cahsmalara ornekler verilrnistir.

PHYTOREMEDIATION AND METAL ACCUMULATING PLANTS

Phytoremediation has been widely persued in recent years as a favorable clean-up technology and is an area of intensive scientific investigation. Plants that hyperacumulate metals have tremendous potantial for remediation of metal contamination in the environment. A on todate about 400 plant species that hyperaccumulate metal are reported, but most are not appropiate for phytoremediaiton because of their small size and slow growth. In addition, the lack of knowledge about the basic biochemical, physiological and molecular mechanisms involved in metal hyperaccumulation limits the commercial application of phytoremediation technology. Despite this limitations, hyperaccumulator plants serve as a gen reservoir for plant breeding and genetic engeneering studies. With the use of genetic engineering it is possible to made an ideal plant for phytoremediation of metals. This review aims to give an overview of phytoremediation technologies and hyperaccumulator plants that could be used for this purpose and points some biotechnological applications.

___

  • [1] Rugh. c.r. (2004). Genetically engineered phytoremediation: one man's trash is another man's transgene. Trends in Biotechnology. 22(0): 496-498.
  • [2] Schnoor, J.L. and Dce, P.E. (t997). Phytoremediation. GWRTAC Series, Technology Evaluation Report, TE-98-0 1, October 1997.
  • [3] Cunningham, S.D. and Ow, D.W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110: 715- 719.
  • [4] Cunningham, S.D., Berti, W.R. and Huang, 1.W. (1995). Phytorernediation of contaminated soils. Trends lT1 Biotechnology, 13 (9): 393-397.
  • [5] Prasad, M.N.Y. and Freitas, H.M. (2003). Metal hyperaccumulation in plants - Biodiversity Prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3): 285-321.
  • [6] Dushenkov, Y., Kumar, P.B.N.A., Motto, H. and Raskin, 1. (1995). Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology, 29: 1239-1245.
  • [7] Marschner, H. (1997). Selenium. In Mineral nutrition of higher plants, 2nd ed., p 430-433, Academic Press.
  • [8] Pilion-Smits, E. And Pilon, M. (2002). Phytoremediation of metals using transgenic plants. Critical Reviews ill Plaut Science, 21(5): 439-4.')6.
  • [9] Heaton. A.C.P., Rugh. c.r., Wrung. N. And Meagher, R.B. (1998). Phytorcrncdiation of mercury- and mcthyrnercurypolluted soils using genetically engineered plants . ./UlIr1IU/ o] Snil Conuuninauts, 7(4): .:1-97-5 I O.
  • [10] Prasad, M.N.V and Strzatka, K. (2002). Physiology and Biochemisty of Metal Toxicity in Plants. Kluwer Academic Publisher" p. 111-147.
  • [11] Cobbett, C. (2003). Heavy metals and plants- model systems and hyperaccumulators. New Phytologist, 159: 289-293.
  • [12] Guerinot, M.L. and Salt, D.E. (2001). Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiology, 125: 164-167.
  • [13] Ghaderian, Y.S.M., Lyon, A.J.E and Baker, A.J.M. (2000). Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. New Phytologist, 146 (2): 219-224.
  • [14] Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R. and Kochian, L.V. (1997). Phytoextraction of cadmium and zinc from a contaminated site. Journal of Environmental Quality, 26: 1424-1430.
  • [15] Escarre 1., Lefebvre, c., Gruber, W.,Leblanc, M., Lepart, J., Riviere, Y. and Delay, B. (2000). Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and non metalliferous sites in the mediterranean area: implications for phytoremediation. New Phytologist, 145: 429- 437.
  • [16] Surridge, C. (2003). A Taste for Heavy Metal, Nature Science Update, 28 July 2003·.
  • [17] Reeves, R.D. and Adiguzel, N. (2004). Rare plants and nicel accumulators from Turkish serpentine soils, with special refence to centaurea species. Turkish Journal of Botany, 28: 147-153.
  • [18] Cobbet, C.S. and Meagher, R.B. (2002). Arabidopsis and genetic potential for the phytoremediation of toxic elemental and organic pollutants. In The Arabidopsis Book, eds. C.R.Somerville and E.M. Meyerowitz, American Society of PlantBiologists.
  • [19] Marques, L., Cossegal, M., Bodin, S., Czernic, P. And Lebrun, M. (2004). Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulenscens. New Pliytologist, 164: 289-295.
  • [20] Papayon, A. and Kochian, L.V. (2004). Identification of Thlaspi caerulenscens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 136: 3814-3823.
  • [21] Cosio, C, Martinoia, E. and Keller, C. (2004). Hyperaccumulation of cadmium and zinc in Thlaspi caerulenscens and Arabidopsis halleri at the leaf cellular level. Plant Physiology, 134: 716-725.
  • [22] Lasat, M.M., Baker, A.l.M. and Kochian, L.V. (1996). Physiological characterization of root Zn+2 absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiology, 112: 1717- 1722.
  • [23] Lasat, M.M., Baker, AJ.M. and Kochian, L. V. (1998). Altered zinc compartmentation in the root symplasm and sitimulated Zn+2 absorption into the leaf as mechanisms involved in zinc hyperaccumulatioIi In Thlaspi caerulenscens. Plant Physiology, 118: 875-883.
  • [24] Lasat, M.M., Pence, N.S., Garvin, D.P., Ebbs, S.D. and Kochian, L.V. (2000). Molecular physiology of zinc transport in Zn accumulator Thlaspi caeruleuscens. Journal of Experimental Botany, 51 (342): 71-79.
  • [25] www.tubitak.gov.tr/tubives
  • [26] Cobbett, CS. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Plivsiologv, 123: 825-832.
  • [27] Pence, N.S., Larsen, P.B, Ebbs, S.D., Letham, D.L.D, Lasat, M.M., Garvin, D.F., Eide, D. And Kochian, L.V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulenscens. Proceedings of the National Academy of Sciences USA, 97: 4956-4960.
  • [28] Grotz, N., Fox, r.c., Connolly, E., Park, W., Guerinot, M.L. and Eide, D. (1998). IdentificatioOn of a familly of zinc transporter genes from Arahidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences USA, 95: 7220-7224.
  • [29] Rugh, c.i., Wilde, D., Stack, N.M., Thompson, D.M., Summers, A.a., and Meagher, R.B. (1996). Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proceedings of the National Academy of Sciences of the USA, 93, 3182- 3187.
  • [30] Rugh, c.L., Senecoff, J.F., Meagher, R.B., and Merkle, S.A. (1998). Development of transgenic yellow-poplar for mercury phytoremediation. Nature Biotechnology, 16,925-928.
  • [31] Bizily, S., Rugh, c.r., Summers, A.O., and Meagher, R.B. (1999). Phytorernediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proceedings of the National Academy of Sciences of the USA, 96,6808-6813.
  • [32] Bizily, S., Rugh, c.L., and Meagher, R.B. (2000). Efficient phytodetoxification of the environmental pollutant methylmercury by engineered plants. Nature Biotechnology. 18,213-217.
  • [33] Hasegawa, 1., Terada, E., Sunairi, M., Wakita, H., Shinmachi, F., Noguchi, A., Nakajima, M. and Yazaki, 1. (1997). Genetic improvment of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP 1). Plant Soil, 196: 277- 281.
  • [34] Zhu, Y., Pilon-Simits, E.AR., Jouanin, L. and Teny, N. (l999a). Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiology, 119: 73-79.
  • [35] Zhu, Y., Pilon-Simits, E.AR., Tarun, A., Weber, S.u., Jouanin, L. and Terry, N. (l999b). Cadmium tolerance and accumulation in Indian mustard is enhanced by evercxpressing y-glutamylcysteine synthetase. Plant Physiology, 121: 1169- 1177.
  • [36] Ernst, W.R. (2000). Evaluation of metal hyperaccumulation and phytoremediation hype. New Phytology, 146: 357-358.
  • [37] Gleba, D., Borisjuk, N.V., Borisjuk, L.G., Kneer, R, Poulev, A, Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y.Y and Raskin, 1. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences of the USA, 96(11): 5973-5977.
  • [38] Meharg, AA. (2004). Arsenic in rice-understanding a new disaster for South-East Asia. Trends in Plant Science, 9(9): 415-417.
  • [39] Dhankher, O.P. Li, Y, Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Sashti, N.A and Meagher R.B. (2002) .. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and -glutamylcycteine synthetase expression. Nature Biotechnology, 20(11): 1140- 1145.