FARKLI ORANLARDA Mn İÇEREN CdS FİLMLERİNİN BAZI FİZİKSEL ÖZELLİKLERİNİN İNCELENMESİ

CdS ve farklı oranlarda (%10, %30) mangan (Mn) katılmış CdS:Mn filmleri uygulaması kolay ve ekonomik olmasıyla dikkat çeken ultrasonik kimyasal püskürtme (UKP) yöntemi ile 275+5oC taban sıcaklığında üretilmiş ve 3 saat süreyle 500°C sıcaklıkta tavlama işlemine tabi tutulmuştur. Tüm filmlerin fotovoltaik güneş hücrelerinde kullanım potansiyelini araştırmak amacıyla optik, elektrik ve yüzey özellikleri incelenmiştir. Elde edilen filmlerin kalınlıkları ve bazı optik özelliklerinin belirlenmesi için Spektroskopik Elipsometri (SE) ve UV/VIS Spektroskopi teknikleri kullanılmıştır. Optik metot kullanılarak ham ve Mn katılmış CdS:Mn filmlerin optik bant aralıkları sırası ile 2.14 eV, 2,24eV ve 2.16 eV olarak belirlenmiştir. Elde edilen filmlerin kırılma indisi değerlerinin 1.73-1.80 aralığında değiştiği ve sönüm katsayısı değerlerinin ise 0.10 civarında sabit kaldığı saptanmıştır. Yüzey morfolojileri ve yüzey pürüzlülük değerleri atomik kuvvet mikroskobu kullanılarak incelenmiş ve dört uç metodu ile CdS ve CdS:Mn filmlerinin elektriksel özdirençlerinin 5.5×104 - 4.8×105 Wcm aralığında değiştiği belirlenmiştir.

INVESTIGATION OF SOME PHYSICAL PROPERTIES OF CdS FILMS AT DIFFERENT Mn INCORPORATION

CdS and Mn incorporated CdS:Mn (%10, %30) films were deposited onto glass substrates at 275+5oC by a low cost and simple ultrasonic spray pyrolysis technique and annealed at 500°C during 3 hours at air atmosphere. Optical, electrical and surface properties of the films were investigated in order to determine of application potential on photovoltaic solar cells. Spectroscopic Ellipsometry and UV/VIS spectrophotometry techniques were used to determine of film thicknesses and some optical properties. Band gaps of CdS and CdS:Mn films were identified using optical method as 2.14 eV, 2,24eV and 2.16 eV, respectively. It was determined that the refractive indices values of the films changed between 1.73-1.80 and extinction coefficient values remain constant around 0.10. Surface morphologies and roughness values of the films were investigated by Atomic Force Microscopy. Also, electrical resistivities of all films determined by four point probe technique between 5.5×104 - 4.8×105 Wcm.

___

  • [1] J. Herrero, M.T. Gutierrez, C. Guillen, J.M. Dona, M.A. Martinez, A.M. Chaparro, R. Bayon, “Photovoltaic windows by chemical bath deposition”, Thin Solid Films. 361/362 (2000) 28-33.
  • [2] P.N. Gibson, M.E. Ozsan, D. Lincot, P. Cowache, D. Summa, “Modelling of the structure of CdS thin films”, Thin Solid Films. 361/362, 34-40 (2000).
  • [3] M. Kostoglou, N. Andritsos, A.J. Karabelas, “Progress towards modelling the CdS chemical bath deposition process”, Thin Solid Films. 387, 115-117 (2001).
  • [4] S. Prabahar, M. Dhanam, “CdS thin films from two different chemical baths-structural and optical analysis”, J. Crys. Growth. 285, 41–48 (2005).
  • [5] O. Vigil, O. Z. Angel, Y. Rodriguez, “Changes of the structural and optical properties of cubic CdS films on annealing in H2 and air atmospheres”, Semicond. Sci. Technol. 15, 259–262 (2005).
  • [6] B. S. Moon, J.H. Lee, Hakkee Jung, “Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and Sputtering Techniques”, Thin Solid Films. 511/512, 299–303 (2006).
  • [7] J. Nishino, S. Chatani, Y. Uotani, Y. Nosaka, “Electrodeposition method for controlled formation of CdS films from aqueous solutions”, J. Electroanal. Chem. 473, 217–222 (1999).
  • [8] A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis”, J Alloy and Compd. 557, 53–59 (2013).
  • [9] P. P. Sahay, R. K. Nath, S. Tewari, “Optical properties of thermally evaporated CdS thin films”, Cryst. Res. Technol. 42, 275 – 280 (2007).
  • [10] D. Sreekantha Reddy, K. Narasimha Rao, K.R. Gunasekhar, N. Koteeswara Reddy, K. Siva Kumar, P. Sreedhara Reddy, “Annealing effect on structural and electrical properties of thermally evaporated Cd1−xMnxS nanocrystalline films”, Mater. Res. Bull. 43, 3245–3251 (2008).
  • [11] C. Wang, H.M. Wang, Z.Y. Fang, “Influence of Mn doping on the microstructure and optical properties of CdS”, J. Alloy. Compd. 486, 702–705 (2009).
  • [12] D. Sreekantha Reddy, K. Narasimha Rao, K.R. Gunasekhar,Y. D. Reddy, P. S. Reddy, “Synthesis and dc magnetic susceptibility of the diluted magnetic semiconducting Cd1−xMnxS nanocrystalline films”, J. Alloy. Compd. 461, 34–38 (2008).
  • [13] Q. Wang, Z. Xu, L. Yue, W. Chen, “Characteristics and optical properties of Cd1−xMnxS nanorods prepared through hydrothermal route”, Opt. Mater. 27, 453–458 (2004).
  • [14] Q. Pang, B.C. Guo, C.L. Yang, S.H. Yang, M.L. Gong, W.K. Ge, J.N. Wang, “Cd1−xMnxS quantum dots: new synthesis and characterization”, J. Crys. Growth. 269, 213–217 (2004).
  • [15] P. Sudhagar, R. Sathyamoorthy, S. Chandramohan, S. Senthilarasu, S.H. Lee, “Synthesis of Cd1−xMnxS nanoclusters by surfactant-assisted method: Structural, optical and magnetic properties”, Mater. Lett. 62, 2430–2433 (2008).
  • [16] B. Tripathi, F. Singh, D.K. Avasthi, D. Das, Y.K. Vijay, “Study of effects of Mn2+ in CdS nanocrystals”, Phys. B. 400, 70–76 (2007).
  • [17] A.I. Savchuk, V.I. Fediv, A.G. Voloshchuk, T.A. Savchuk, Yu.Yu. Bacherikov, A. Perrone, “New approach to synthesis of semimagnetic semiconductor nanoparticles”, Mater. Sci. Eng. C. 26, 809 – 812 (2006).
  • [18] B. Tripathi, F. Singh, D.K. Avasthi, A.K. Bhati, D. Das, Y.K. Vijay, “Structural, optical, electrical and positron annihilation studies of CdS:Fe system”, J. Alloy Compd. 454, 97–101 (2008).
  • [19] R. Sathyamoorthya, P. Sudhagar, A. Balerna, C. Balasubramanian, S. Bellucci,A.I. Popov, K. Asokan, “Surfactant-assisted synthesis of Cd1−xCoxS nanocluster alloys and their structural, optical and magnetic properties”, J. Alloy Compd. 493, 240–245 (2010).
  • [20] Y. Kashiwaba, K. Isojima, K. Ohta, “Improvement in the efficiency of Cu-doped CdS/non-doped CdS photovoltaic cells fabricated by an all-vacuum process”, Sol. Energy Mater. 75, 253-259 (2003).
  • [21] J. Ma, G. Tai, W. Guo, “Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles”, Ultrason. Sonochem. 17, 534-540, (2010).
  • [22] Y. Cui, C.M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, 291, 851, (2001).
  • [23] I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisator, “Air-stable all-inorganic nanocrystal solar cells processed from solution”, Science, 310, 46, (2005).
  • [24] H.G. Tompkins, E.A. Irene, “Handbook of Ellipsometry”, William Andrew Publishing, Norwich NY, 2005.
  • [25] H. Fujiwara, “Spectroscopic Ellipsometry Principles and Applications”, John Wiley & Sons Ltd, West Sussex, England, (2007).
  • [26] Khoshman J.M., Kordesch M.E., “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films”, Physica Statatus Solidi, C2(7): 2821-2827 (2005).
  • [27] Goyal D.K., Pribil G.K., Woollam J.A., Subramanian A., “Detection of ultrathin biological films using vacuum ultraviolet spectroscopic ellipsometry”, Material Science Engineer B., 149: 26-33 (2008).
  • [28] Z.G. Hu, G.S. Wang, Z.M. Huang, J.H. Chu, “Optical properties of Bi3.25La0.75Ti3O12 thin films using spectroscopic ellipsometry”, Appl. Phys. 93, 3811–3815 (2003).
  • [29] Hiroyuki Fujiwara, “Spectroscopic Ellipsometry:Principles and Applications”, John Wiley & Sons, England, (2007).
  • [29] Hiroyuki Fujiwara, “Spectroscopic Ellipsometry:Principles and Applications”, John Wiley & Sons, England, (2007).
  • [30] J.M. Khoshman, M.E. Kordesch, J.M. Khoshman, M.E. Kordesch, “Optical characterization of sputtered amorphous aluminum nitride thin films by spectroscopic ellipsometry”, J. Non-Cryst. Solids 351, 3334–3340 (2005).
  • [31] P. Rajı, C. Sanjeevıraja, K. Ramachandran, “Thermal and structural properties of spray pyrolysed CdS thin film”, Bull. Mater. Sci. 28, 233–238 (2005).
Journal of Scientific Reports-A-Cover
  • Başlangıç: 2020
  • Yayıncı: Kütahya Dumlupınar Üniversitesi
Sayıdaki Diğer Makaleler

BİYOWEB: İNTERNET TABANLI BİYOENFORMATİK ARAYÜZÜ

Yunus Özcan, Murat Ertekin, Gıyasettin Özcan

SOL-JEL SPİN KAPLAMA YÖNTEMİYLE HAZIRLANMIŞ ZnO İNCE FİLMLERİN OPTİK ÖZELLİKLERİNİN İNCELENMESİ

Tacettin YILDIRIM, Aliye ÇANKAYA, İlker ÖCALAN

FARKLI ORANLARDA Mn İÇEREN CdS FİLMLERİNİN BAZI FİZİKSEL ÖZELLİKLERİNİN İNCELENMESİ

Meryem Polat Gönüllü

SOLKANE PROGRAMI İLE ORGANİK RANKİNE ÇEVRİMİNİN ETKİNLİK ORANI ANALİZİ

Emre ARABACI, Bayram KILIÇ

2-HİDROKSİ-6-[(4-HİDROKSİFENİLAMİNO)METİLEN]SİKLOHEKZA-2,4-DİYENON’UN KUANTUM KİMYASAL HESAPLAMALARI ÜZERİNE BİR ÇALIŞMA

Özkan Kalfa, Fatih Tekin, Başak Koşar, Cem Cüneyt Ersanlı

3-HİDROKSİ-6-[(4-HİDROKSİFENİLAMİNO)METİLEN]SİKLOHEKZA-2,4-DİYENON’ IN KUANTUM KİMYASAL HESAPLAMALARI ÜZERİNE BİR ÇALIŞMA

Fatih Tekin, Özkan Kalfa, Başak Koşar, Cem Cüneyt Ersanlı

InSe ve InSe:Zn YARIİLETKENLERİN BRIDGMAN/STOCKBARGER TEKNİĞİYLE BÜYÜTÜLMESİ ve YAPISAL KARAKTERİZASYONU

Bekir Gürbulak, Songül Duman, Salih Zeki Erzenoğlu, Mehmet Şata, Afsoun ASHKHASİ, Mutlu Kundakçı, Muhammet Aksoy, Muhammet Yıldırım

YENİ NESİL GÜNEŞLE ISITMA SİSTEMİ UYGULAMASI

A. Bedirhan Özyeşil, Doğukan Dönmez, Abdullah Keçeciler

SABUNCUPINAR - KÜTAHYA ARASINDAKİ DEMİRYOLLARINDA BALAST MALZEMESİ OLARAK KULLANILAN VOLKANİK KAYACIN FİZİKSEL, MİNERALOJİK ve AŞINMA ÖZELLİKLERİ ÜZERİNDE BOZUNMA SÜREÇLERİNİN ETKİSİ

Mustafa Derman, Ömer Adıgüzel, Enes Zengin, Zeynal Abiddin Ergüler

TERMOELEKTRİK MALZEME İLE SU SOĞUTMA UYGULAMASI

Nuran Albayrak, Abdullah Keçeciler