Yumuşak zeminde tünel kazısının 3 boyutlu simülasyonu

Bu çalışmada, yüzleşmeler yapmayı amaçlayan çeşitli hesaplama prosedürleri kullanılarak yumuşak zeminde tünel yüzünün deformasyonlarının ve stabilitesinin bir analizi sunulmaktadır. Üç prosedür kullanarak bir dizi 2B hesaplamayla tünellemede üç boyutlu modellemeye yaklaşma amaçlarımız: Kayıp Hacim yöntemi (LVM), Yakınsama Sınırlandırma yöntemi (CCM) ve yüzey basıncı yöntemi (Pf). Oturmaları, boyuna ve yatay yer değiştirmeleri tahmin etmek için bir dizi sayısal çalışma yapılmıştır. Karşılaştırma yapmak için analitik ve ampirik yaklaşımlar da kullanılmıştır. Sonuçlar, böyle bir analizin ilgisini gösterdi. Sayısal sonuçların farklı yöntemlerle hesaplananlarla karşılaştırılması iyi bir uyum göstermektedir.

3D simulation of tunnel excavation in soft soil

In this study, an analysis of the deformations and the stability of tunnel face in soft soil using several calculation procedures aimed at making confrontations are presented. Our purposes to approach three-dimensional modelling in tunnelling by a series of 2D computations using three procedures: The Lost Volume method (LVM), the Convergence Confinement method (CCM) and the face pressure method (Pf). A series of numerical studies was carried out to estimate the settlements, longitudinal and horizontal displacements. Analytical and empirical approaches have also been used to make comparisons. The results showed the interest of such analysis. The comparison of the numerical results to those calculated with different methods shows good agreement.

___

  • [1] Peck R. B. Peck (1969). Deep excavations and tunnelling in soft ground.
  • [2] Attewell, P. B. (1978). Ground movements caused by tunnelling in soil. Pages 812-948 of: Large ground movements and structures. Pentech Press, London.
  • [3] Franzius J. N. (2003). Behaviour of buildings due to tunnel induced subsidence. Thesis (PhD). London: Imperial College, University of London.
  • [4] Ozkaya, U., Melgani, F., Bejiga, M. B., Seyfi, L., and Donelli, M. (2020). GPR B scan image analysis with deep learning methods. Measurement, 165, 107770.
  • [5] Dias, D., and Janin, J.P., and Soubra, A.H., and Kastner, R. (2008), “Three-dimensional face stability analysis of circular tunnels by numerical simulations”, The Challenge of Sustainability in the Geoenvironment 'GeoCongress 2008', New Orleans, USA.
  • [6] Mroueh, H., and Shahrour, I. 2008. A simplified 3D model for tunnel construction using tunnel boring machines. Tunnelling and Underground Space Technology 23 (2008) 38–45.
  • [7] Demagh, R., Emeriault F. et Kastner R. (2008). Modélisation 3D du creusement de tunnel par tunnelier à front pressurisé dans les sols surconsolidés. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur (JNGG’08) Nantes, 18-20 juin 2008, 305-312.
  • [8] Bloodworth, A. G. (2002). Three-dimensional analysis of tunnelling effects on structures to develop design methods: Thèse de doctorat : Université d’Oxford, Grande Bretagne.
  • [9] Kasper, T., and Meschke, G. (2004). A 3D finite element simulation model for TBM tunneling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 1441-1460
  • [10] Liu, G. (1997). Numerical modelling of damage to masonry buildings to tunnelling. Thèse de doctorat : Université d’Oxford. Grande Bretagne.
  • [11] Nguyen, P. G. (2003). Modélisation numériques des soutènements d’excavation. Thèse de doctorat. École nationale des ponts et chaussées.
  • [12] Vitali OP, Celestino TB and Bobet A 2018 3D finite element modelling optimization for deep tunnels with material nonlinearity. Underground Space. 3(2) 125-139.
  • [13] Jin Y. F. Zhu B. Q., Yin Z. Y., Zhang D. M. (2019) Three-dimensional numerical analysis of the interaction of two crossing tunnels in soft clay. Underground Space 4 (2019) 310–327.
  • [14] Ramsheh F. A., Rashiddel A. , Dias D. (2021). 3D numerical simulations of tunneling induced soil deformations Phys.: Conf. Ser. 1973 012207.
  • [15] AFTES (1995). Tassements lies au creusement des ouvrages en souterrain. Revue Tunnels et Ouvrages Souterrains, vol. 132, pp. 373-395.
  • [16] Greenwood, J.D. (2003). Three-dimensional analysis of surface settlement in soft ground tunnelling, Master of Engineering in Civil and Environmental Engineering, University of Minnesota, USA, 90p.
  • [17] Panet M., Guenot A. (1982), Analysis of convergence behind the face of a tunnel. Proc. Int. Symp. : Tunnelling 82, Brighton.
  • [18] Martin, F. (2012) Mécanique des Roches et Travaux Souterrains. Huitième édition Janvier 2012
  • [19] Panet M. (1995). Le calcul des tunnels par la méthode convergence-confinement, Presses de l’ENPC.
  • [20] Broms B.B., Bennermark H. (1967), Stability of clay at vertical openings. Journal of the Soil Mechanics and Foundations Division, ASCE, SM1 January 1967, pp. 71-94.
  • [21] Krause, T. (1987). Schildvortrieb mit fltissigkeits- und erdgesttitzter Ortsbrust. Dissertation TU Braunschweig.(in German).
  • [22] Jancsecz, S. and W. Steiner (1994). Face support for large Mix- Shield in heterogeneous ground conditions. Tunneling 94. London.
  • [23] Anagnostou G., Kovári K. (1996). Face Stability Conditions with Earth Pressure Balanced Shields. Tunnelling and Underground Space Technology, 11, No. 2, 165-173.
  • [24] Broere, W., 2001. Tunnel Face Stability and New CPT Applications, Dissertation, TU Delft 2001.
  • [25] Carranza-Torres, C. (2004). " Computation of factor of Safety for Shallow Tunnels using Caquot's Lower Bound Solution. " In Publication.
  • [26] Atkinson J. H., and Potts D. M. (1977). Stability of a shallow circular tunnel in cohesionless soil. Volume 27 Issue 2, June 1977, pp. 203-215. https://doi.org/10.1680/geot.1977.27.2.203
  • [27] Davis E.H., Gunn M.J., Mair R.J., Seneviratne H.N. (1980), The stability of shallow tunnels and underground openings in cohesive material. Geotechnique, 30. n° 4, pp. 397-416.
  • [28] Leca e dorm Leca E., Dormieux L. (1990). Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique, Vol. 40, N° 4, pp. 581-606.
  • [29] Javad, M., and Shahriar, K., and Moarefvand, P. (2011). Tunnel Face Stability Analysis in Soft Ground in Urban Tunneling by EPB Shield. (Case Study: 7 th Line in Tehran Metro). Australian Journal of Basic and Applied Sciences, 5(11): 589-601, 2011 ISSN 1991-8178.
  • [30] Vermeer PA and Brinkgreve R (1993) PLAXIS Version 5 Manual. Balkema, Rotterdam, the Netherlands.
  • [31] Swoboda, G. 1979. Finite element analysis of the New Austrian Tunnelling Method (NATM). Page 581 of: Proc. 3rd Int. Conf. Num. Meth. Geomech., Aachen, vol. 2.
  • [32] Gens, A. 1995. General report: Prediction, performance and design. Pages 1233 { 1247 of: Int. Symp. on pre-failure deformation charact. of geomaterials. Balkema, Rotterdam.
  • [33] Anagnostou G. (2002). Urban tunneling in water bearing ground–Common problems and soil mechanical analysis methods. Proc. 2nd Int. Conference on Soil Structure Interaction in Urban Civil. Engineering.
  • [34] Anagnostou, G. and Kovári, K. (1996). Face Stability Conditions with Earth Pressure Balanced Shields. Tunnelling and Underground Space Technology, 11, No. 2, 165-173.
  • [35] Anagnostou G. Kovári K. (1997). Face stabilization in closed shield tunneling. Rapid Excavation and Tunnel Construction, Las Vegas.
  • [36] Atahan C. (1995). Modélisation numérique du creusement d'un tunnel à l’aide d'un bouclier à pression de boue. Thèse de doctorat : École Nationale des ponts et chaussées.
  • [37] Berredane, A., and Allal, M. A. and El Houari, N. (2019) “Interaction between two tunnels constructed at low depths : Case of a frictional and coherent soil”. The First International Conference on Materials, Environment, Mechanical and Industrial Systems ICMEMIS’19. 29-30 June 2019, Djelfa, Algeria.
  • [38] Berthoz, N. (2012). Modélisation physique et théorique du creusement pressurisé des tunnels en terrains meubles homogènes et stratifiés. Thèse Doc. Ecole Nationale des Travaux Publics de l’Etat.
  • [39] Berthoz, N., Branque D., Wong, H., and Subrin, D. (2010a). Evolution des champs de contraintes et déplacements autour d’un tunnelier à front pressurisé, Actes des Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Grenoble, France, pp. 779-786.
  • [40] Bezuijen, A. (2007). Bentonite and grout flow around a TBM. Proc. ITA 2007, Prague.
  • [41] Bezuijen, A., and Talmon, A.M. (2008). Processes around a TBM. GEOtechniek – april 2008.
  • [42] Boubou, R. (2010). Prise en compte du mode de pressurisation du front et de la géologie dans l’étude de l'impact du creusement de tunnels. Thèse de doctorat : INSA de Lyon. France.
  • [43] Brinkgreve, R.B.J., Broere, W. (2004). PLAXIS 3D Tunnel Version 2, PLAXIS bv, Netherlands.
  • [44] Brinkgreve, R.B.J., Broere, W., Waterman, D. (2004). PLAXIS 2-D Professional Version 8.0 – User’s Manual. PLAXIS b.v., The Netherlands.
  • [45] Brinkgreve, R.B.J., and Vermeer P.A. (2001). Plaxis 3D Tunnel (Validation manual). Balkema, Lisse. COB. Centre for Underground Construction (1996). Parameterset voor de predicties, COB Report K100-W-004. Gouda.
  • [46] Broere, W. (1998). Face stability calculation for a slurry shield in heterogeneous soft soils, Proc. Of the world tunnel congress 98 on tunnels and metropolises, Sao Paulo, Rotterdam : Balkema, 1, 215- 218.
  • [47] Dolzhenko, N. (2002). Etudes expérimentale et numériques de modelé renduit bidimensionnel du creusement d’un tunnel. Développement d’une loi de comportement spécifique. In : Thèse de doctorat : INSA de Lyon. France.
  • [48] Kasper, T., and Meschke G. (2006a). On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, vol. 21, pp.160-171. 32.
  • [49] Kasper, T., and Meschke G. (2006b). A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling. Computers and Geotechnics, vol.33, pp.234-247.
  • [50] El Houari, N., and Allal M. A. (2014). The Settlement of Soft Soil Caused by Tunneling in Presence of Flow. Electronic Journal Geotechnical Engineering.(EJGE).Vol. 19. 2014, Bund. Z.
  • [51] El Houari, N., and Allal M. A. (2013). Numerical study of the settlement caused by the tunneling in the presence of the flow Arabian Tunneling Conference & Exhibition 10-11 December 2013. Dubai United Arab Emirates.
  • [52] El Houari, N., and Allal M. A., and Abou-Bekr N. (2011). Numerical Simulation of the Mechanical Response of the Tunnels in the Saturated Soils by Plaxis. Jordan Journal of Civil Engineering, vol 5, N°01, pp 09-31.
  • [53] El Houari N., and Allal M.A., and Abou-Bekr N (2008). Ground movement using Plaxis 2D. 20th Canadian Tunneling Conference, Ontario, Canada, 27-28 October 2008.
  • [54] El Houari N. (2022). Ground movements induced by twin tunneling in soft soil. 5. International social sciences and innovation Congress 12-13 November 2022 Ankara/ Turkey.
  • [55] El Houari N. (2022). Soil responses caused by tunneling nearby of piles foundations. 8th International mardin artuklu scientific researches conference June 4-6, 2022 / Mardin, Turkey.
  • [56] El Houari N. (2022). Numerical analysis of the underground works in heterogeneous soil in urban environment. 4. International Palandoken scientific studies congress 28-29 April 2022/Erzurum.
  • [57] Galli, G., and Leonardi, A. (2004).Three-dimensional modelling of tunnel excavation and lining: Computers and Geotechnics 31.171–183.www.elsevier.com/locate/compgeo.
  • [58] J. Yin-Fu , Z. Bing-Qing , Y. Zhen-Yu , Z. Dong-Mei. (2019). Three-dimensional numerical analysis of the interaction of two crossing tunnels in soft clay. Journal of Underground Space 4 (2019) 310–327. https://doi.org/10.1016/j.undsp.2019.04.002
  • [59] Komu M. P., Guney U., Kilickaya . T. E., Gokceoglu C. (2019) Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey). Geotech Geol Eng https://doi.org/10.1007/s10706-019-01084-9(0123456789().,-volV() 0123458697().,-volV)
  • [60] Leca, E. (2000). Etude du comportement des tunnels creusés en terrains meubles : Laboratoire centrale des ponts et chaussées. Etude et recherche des LCPC, série Géotechnique. GT 66-96 pages. Paris. France.
  • [61] Moller, S.C. (2006). Tunnel induced settlements and structural forces in linings. Ph thesis, Institute of Geotechnical Engineering. University of Stuttgart (Germany), 174p.
  • [62] Mollon, G., and Dias D., and Soubra A.H. (2010). Face stability analysis of circular tunnels driven by a pressurized shield. Journal of Geotechnical and Geoenvironmental Engineering 136 (1), 215–229.
  • [63] Subrin, D. (2002). Etudes théoriques sur la stabilité et le comportement des tunnels renforcés par boulonnage, thèse de doctorat de l’Institut National des Sciences Appliquées de Lyon, France.
  • [64] Talhaoui Z., El Houari N., (2022). Mechanical behavior of bituminous concrete. 0/14. 8th International mardin artuklu scientific researches conference. June 04-06, 2022 / Mardin, Turkey.
  • [65] Viggiani, G., and Soccodato, F.M. (2004). Predicting tunneling-induced displacements and associated damage to structures. Rivista italiana di geotechnical, vol. 4, pp.
  • [66] Allahverdi N, Nasri V (2013). Three dimensional numerical analysis for soft ground tunneling. In: Seventh international conference on case histories in geotechnical engineering, 29 April–4 May, Chicago.
  • [67] S.G. Ercelebi, H. Copur, N. Bilgin & C. Feridunoglu. Surface settlement prediction for Istanbul metro tunnels via 3D FE and empirical methods. Underground Space Use: Analysis of the Past and Lessons for the Future – Erdem & Solak (eds) © 2005 Taylor & Francis Group, London, ISBN 04 1537 452 9.