Kalınlık, Doping ve Hata Yoğunluğu Kontrolü Yoluyla Kurşunsuz CH3NH3SnI3 Perovskite Güneş Pillerinin Performansını Optimize Etme

Perovskite güneş pilleri, mükemmel fotovoltaik performansları ve basit üretim süreçleri nedeniyle büyük ilgi gördü. Bununla birlikte, yaygın olarak çalışılan CH3NH3PbI3 perovskite malzemesinde kurşun (Pb) kullanımı, havadaki düşük stabilite nedeniyle büyük ölçekli üretimini sınırlar. Sonuç olarak, araştırmacılar ümit verici bir alternatif olarak kurşunsuz CH3NH3SnI3 perovskite yöneldiler. Bu çalışmada, TiO2/CH3NH3SnI3/Cu2O yapısına sahip CH3NH3SnI3 perovskite güneş pillerinin fotovoltaik özelliklerini araştırmak için tek boyutlu simülasyon yazılımı kullandık. Emici tabakanın kalınlığını, doping konsantrasyonunu ve kusurların yoğunluğunu ayarlayarak güneş pillerinin performansını iyileştirmeyi başardık. Elde edilen Jsc= 31,519 mA/cm2, Voc = 0,965V, FF = %78,717 ve PCE = %23,943 sonuçları, kurşunsuz CH3NH3SnI3'ün yüksek verimli ve çevre dostu bir güneş soğurucu potansiyelini göstermektedir.

Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control

Perovskite solar cells have gained significant attention due to their excellent photovoltaic performance and simple manufacturing process. However, the use of lead (Pb) in the widely studied CH3NH3PbI3 perovskite material limits its large-scale production due to low stability in the air. As a result, researchers have turned to lead-free CH 3 NH 3 SnI 3 perovskite as a promising alternative. In this study, we used one-dimensional simulation software to investigate the photovoltaic properties of CH 3 NH 3 SnI 3 perovskite solar cells with a TiO 2 /CH 3 NH 3 SnI 3 /Cu 2 O structure. By adjusting the thickness of the absorbing layer, doping concentration, and density of defects, we were able to improve the performance of the solar cells. The obtained results of Jsc= 31,519 mA/cm 2 , Voc = 0,965V, FF = 78,717%, and PCE = 23,943% demonstrate the potential of lead-free CH 3 NH 3 SnI 3 as a highly efficient and environmentally friendly solar absorber.

___

  • [1] Lee, K., Kim, H., & Park, N. G. (2012). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 338(6107), 643-647.
  • [2] Tan, Z., Zhao, N., & Wu, J. (2016). Efficient and stable perovskite solar cells: a review. Renewable and Sustainable Energy Reviews, 57, 1119-1129.
  • [3] Mitzi, D. B., Park, N. G., & Osgood, R. M. (2014). High-efficiency hybrid photovoltaic perovskites. Nature Materials, 13(9), 873-880.
  • [4] Ye, L., Li, Y., & Chen, L. (2017). Tin-based hybrid perovskites for photovoltaic applications. Advanced Energy Materials, 7(7), 1603441.
  • [5] P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep., vol. 11, pp. 1–11, 2021, doi: 10.1038/s41598-021-82817-w.
  • [6] P.Sun, Q.Li, and L.Yang, “Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+,” Nanoscale, p. 10, 2015, doi: 10.1039/C5NR05337D.
  • [7] M. Burgelman, “SCAPS manual,” 2020.
  • [8] L. Yang, A. T. Barrows, and D. G. Lidzey, “Device simulation of lead-free CH 3 NH 3 SnI 3 perovskite solar cells with high efficiency,” vol. 25, p. 10, 2016, doi: 10.1088/1674-1056/25/10/108802.
  • [9] Y. M. Lee, I. Maeng, J. Park, M. Song, and J. Yun, “Comprehensive Understanding and Controlling the Defect Structures : An Effective Approach for Organic-Inorganic Hybrid Application,” vol. 6, no. November, pp. 1–9, 2018, doi: 10.3389/fenrg.2018.00128.
  • [10] Ozkaya, U., & Seyfi, L. (2016). Modeling and Analysis of Absorbing Boundary Condition in Antenna Design. In CBU International Conference Proceedings (Vol. 4, pp. 832-839).
  • [11] M. Burgelman, “SCAPS manual,” 2020.
  • [12] C.Asma, “Optimisation et simulation numérique du profilde la couche absorbante et des différentes couches.”
  • [13] C.Meriem, “Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells,” pp. 0–30, 2017.
  • [14] P. K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep., vol. 11, pp. 1–11, 2021, doi: 10.1038/s41598-021-82817-w