Yağlı Diyetle Beslenen Farelerin Karaciğer Dokusunda Magnezyumun Nitrik Oksit, Malondialdehit ve Glutatyon Düzeylerine Etkisi

Bu çalışmada yağlı diyetle beslenen farelerin karaciğer dokusunda, canlı organizma için birçok faaliyette görev alan magnezyumun nitrik oksit (NO), malondialdehit (MDA) ve glutatyon (GSH) düzeylerine etkisinin araştırılması amacıyla, 39 adet 2 aylık Swiss albino cinsi erkek fare kullanılmıştır. Fareler 4 gruba ayrılarak vü-cut ağırlıkları tartıldı ve kaydedildi. Grup I standart pelet yem ve içme suyu, Grup II % 31.5 yağ içeren pelet yem ve içme suyu, Grup III % 31.5 yağ içeren pelet yem ve Mg ilaveli su, Grup IV standart pelet yem ve Mg ilaveli su ile 12 hafta süreyle beslendi. Vücut ağırlıkları tartıldıktan sonra anestezi işlemi gerçekleştirildi. Ötenazi işle-minden sonra karaciğer dokularından 0.5g parçalar alındı ve homojenize edildi. Elde edilen süpernatantlarda NO, MDA, GSH ve Mg analizleri yapıldı. Çalışmanın sonunda Grup I, Grup II ve Grup III’ün ilk ve son ağırlık-ları arasında istatistiksel olarak anlamlı fark (p<0.01) gözlendi. Yağlı diyet verilen grubun NO düzeyleri kontrol grubuna göre (p<0.001), yağlı diyet ve Mg verilen grubun NO düzeyleri, standart pelet yem ve Mg verilen gruba göre artış(p<0.001) gösterdi. Yağlı diyet verilen grubun Mg düzeyi kontrol grubuna göre (p<0,001), yağlı diyet ve Mg verilen grubun Mg düzeyi standart pelet yem ve Mg verilen gruba göre düşük (p<0.001) bulundu. Yağlı diyet ile beslenen grup ile yağlı diyet ve Mg ile beslenen grupta MDA değeri (p<0,001),standart pelet yem ve Mg verilen grubun GSH düzeyleri kontrol grubuna göre önemli artış (p<0.001) göstermiştir.
Anahtar Kelimeler:

GSH, MDA, Mg, NO, Obezite, Yağlı diyet

The effect of Magnesium on Nitric Oxide, Malondialdehyde and Glutathione in Mice Liver Tissue Fed on Fat-Diet

In this study which aimed to investigate the effect on glutathione (GSH), nitric oxide (NO) and ma-londialdehyde (MDA) levels of magnesium (Mg) playing a role in many activities for the living organism in liver tissue of mice fed with fat diet, 39 2-month Swiss albino mice were used. Mice were divided into 4 groups by weighing their bodies. Group I was fed with standart pellet food and drinking water, Group II was fed with the diet containing 31.5 % oil and drinking water, Group III was fed with the diet containing 31.5 % oil and drinking water containing 7.5 g/L magnesium sulphate (MgSO4), Group IV was fed with standart pellet food and drinking water containing 7.5 g/L MgSO4 for 12 weeks. After weighing, anesthesia was pased. After euthanasia, 0.5g from every liver tissue pieces were homogenized. The obtained supernatant NO, MDA, GSH and Mg analyzes were performed. At the end of the study, while the difference between the initial and the final weight of Group I, Group II and Group III was significant statistically (p<0.01). Compared to the control group, NO levels of the group fed with a fatty diet increased (p<0.001), and compared to the group fed with standart pellet food and Mg, NO levels of the group fed with a fatty diet and Mg increased (p<0.001). Compared to the control group, it was determined that there was a significant decrease (p<0.05) in the Mg level of the group fed with a fatty, and compared to the group fed with standart pellet food and Mg, it was determined that there was a significant decrease (p<0,05) in the Mg level of the group fed a fatty diet and Mg.MDA levels increased in the group fed with fat diet and in the group fed with fat diet and Mg, and compared to the control group, GSH levels of the group of fed standard pellet food and Mg significantly increased (p<0.001). Consequently, fat diet caused an increase in MDA and NO levels and a decrease in GSH levels. Depending on a fatty diet, it was reached the conclusion that Mg implementation could use as an alternative method in terms of that increasing NO and MDA levels decrease to normal level.
Keywords:

Fat Diet, GSH, MDA, Mg, NO,

___

  • Altunkaynak Z. Effects of high fat diet induced obesity on female rat livers (a histochemical study). Eur J Gen Med, (2005). 2(3): 100-109.
  • Beutler, E.. Duron, O.. Kelly, B.M. Improved method for determination of blood glutathione. J. Lab. Clin Med. (1963). 61: 882-888.
  • Capel ID, Dorrell HM. Abnormal antioxidant defense in some tissues of congenitally obese mi-ce. Biochem J. (1994).,219: 41- 49, 14.
  • Choi JW, Pai SH, Kim SK, Ito M, Park CS, Cha YN. Increases in nitric oxide concentrations cor-relate strongly with body fat in obese humans. Clin Chem. (2001). 47(6):1106-9.
  • Cristol JP, Maggi MF, Guérin MC, Torreilles J, Descomps B. Nitric oxide and lipid peroxidation. C R Seances Soc Biol Fil, (1995). 189:797-809.
  • Davì G, Guagnano MT, Ciabattoni G, Basili S, Falco A, Marinopiccoli M, Nutini M, Sensi S, Patrono C. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA. (2002). 23-30, 288(16): 2008-14.
  • Elizalde M, Rydén M, van Harmelen V, Eneroth P, Gyllenhammar H, Holm C, Ramel S, Olund A, Arner P, Andersson K. Expression of nitric oxide synthases in subcutaneous adipose tissue of no-nobese and obese humans. J Lipid Res (2000). 41: 1244-51.
  • Fearon IM, Faux SP. Oxidative stress and cardio-vascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol; (2009). 47: 372-81.
  • Galic S, Oakhill JS, Steinberg GR. Adipose tis-sue as an endocrine organ. Mol Cell Endocrinol, (2010). 316: 129-39.
  • Ghosh S, Sulistyoningrum C.D, Glier B.M, Verchere B.C, Devlin M.A. Altered glutathione homeostasis in heart augments cardiac lipo-toxicity associated with diet-induced obesity in mice. J Biolog Chem, (2011). 42483-42493.
  • Guerre-Millo M. Adipose tissue and adipokines: for better or worse. Diabetes Met. (2004). 30: 13-9.
  • Günyaktı A. Katı ve sıvı yağ tüketiminin karaci-ğerde glutatyon sentezi ve serbest radikal üretimi üzerine olan etkilerinin araştırılması, Yüksek Li-sans Tezi, Selçuk Üniv Biyokimya (Tıp) AD, Konya. (2000).
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, Third Edition, Oxford Science Publications, (2001). 22- 24.
  • Higashi Y, Sasaki S, Nakagawa K, Kimura M, Noma K, Sasaki S. Low body mass index is a risk factor for impaired endothelium-dependent vasodilation in humans: Role of nitric oxide and oxidative stress. J Am Coll Cardiol. (2003). 42:256- 63.
  • Higdon JV, Frei B. Obesity and oxidative stress: a direct link to CVD? Arterioscler Thromb Vasc Biol. (2003).23: 365-7.
  • Huerta MG, Roemmich JN, Kington ML, Bov-bjerg VE, Wettman AL, Holmes YF, Magnesium deficiency is associated with insulin resistance in obese children: Diabetes Care (2005). 28:1175-81.
  • Kershaw EE, Flier JS. Adipose tissue as an en-docrine organ. J Clin. Endocrinol Met., (2004). 89: 2548-56.
  • Khan NI, Naz L, Yasmeen G. Obesity: an inde-pendent risk factor for systemic oxidative stress. Pak J Pharm Sci, (2006). 19: 62-5.
  • Kharb S, Singh V. Magnesium deficiency poten-tiates free radical production associated with myocardial infarction. J Assoc Physicians India (2000). 48:484-5.
  • Lee JS, Lee MK, Ha TY, Bok SH, Park HM, Jeong KS, Woo MN, Do M, Yeo JY, Choi MS. Supplementation of whole persimmon leaf imp-roves lipid profiles and suppresses body weight gain in rats fed high-fat diet. Food Chem Toxicol, (2006). 44 (11): 1875-83.
  • Matsubara M, Maruoka S, Katayose S. Inverse relationship between plasma adiponectin and lep-tin concentrations in normal-weight and obese women. Eur J Endocrinol, (2002). 147: 173-80.
  • Miller, D.D. Minerals. In “Food Chemistry”, O.R. Fennema (Ed), pp: Marcel Dekker, New York. (1996). 617-649.
  • Miranda KM., Espey MG., Wink DA., A rapid, simple spectrophotometric method for simultane-ous detection of nitrate and nitrite. Nitric Oxide., (2001).5, 62-71.
  • Olszanecka-Glinianowicz M, Zahorska-Markiewicz B, Janowska J, Zurakowski A. Se-rum concentrations of nitric oxide, tumor necro-sis factor (TNF)-alpha and TNF soluble receptors in women with overweight and obesity. Met (2004). 53:1268-73.
  • Özata, M, Mergenb M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, Yilmaz M.İ, Sayal A, Isi-mer Ozdemir C. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. (2002).35, 8, 627–631.
  • Seyithanoğlu M., Öner-İyidoğan Y., Koçak H., Koçak-Toker N., Uysal M. Yüksek yağlı diyetle beslenen farelerin karaciğerinde trigliserid düzey-leri ve oksidatif stres üzerine enginar yaprağı ekstresinin etkisi. Tr J.Biochem, (2012). 37.
  • Ryu MH, Cha YS. The effects of a high-fat or high-sucrose diet on serum lipid profiles, hepatic acyl-CoA synthetase, carnitine palmitoyltransfe-rase-I, and the acetyl-CoA carboxylase mRNA levels in rats. J Biochem Mol Biol, (2003). 36 (3): 312-318. 30
  • Woods SC, D’alessıo DA, Tso P, Rushıng PA, Clegg DJ, Benoıt SC, Gotoh K, Lıu M, Seeley RJ. Consumption of a high-fat diet alters the ho-meostatic regulation of energy balance. Physiol Behavior, (2004). 83 (4): 573-578.
  • Yoshioka T., Kawada K., Shimada T., Mori M., Lipid peroxidation in maternal and cord blood and protective mechanism against activatedoxy-gen toxicity in the blood. Am. J. Obstet. Gynecol, (1979).135, 372-376.
  • Yilmaz A, Coban E, Sari R. The effect weight loss on the mean platelet volume in obese pati-ents. Platelets (2007). 18 (3): 212-216.