Posttranslasyonel Modifikasyon ve Protein Fonksiyonu

Birçok protein fonksiyon gösterebilmesi için posttranslasyonel modifikasyon (PTM) adı verilen bir işleme tabi tutulur. PTM, proteinlerin yersel ve zamansal regülasyonunda ve proteinler tarafından gerçekleştirilen önemli hücresel faaliyetlerin kontrolünde ökaryotik ve prokaryotik hücreler tarafından kullanılan önemli bir araçtır. Herhangi bir zamanda herhangi bir proteinin maruz kaldığı PTM sayısı ve tipi çok fazla olabilir. Ökaryotik hücrelerde sık karşılaşılan ve nispeten detaylı olarak çalışılmış PTM tipleri olarak fosforilasyon, glikozilasyon, asetilasyon, açilasyon, prenilasyon, metilasyon, ubiqutilasyon ve proteolitik parçalanma sayılabilir. Bu tip PTM`ları gerçekleştiren enzimlerin sayısı binleri bulmaktadır. PTM ve bu işlemde görevli enzimlerin iyi kavranması ve çalışılması bize, protein foksiyonu ve hastalıklarla ilişkili anormal PTM`ların anlaşılması için daha iyi fırsatlar sunacaktır

Posttranslational Modifications and Protein Function

Many proteins undergo a process called posttranslational modification (PTM) in order to acquire functional capabilities. PTM of proteins provide prokaryotic and eukaryotic cells with highly versatile tools and tricks, which can be used in the spatial and temporal regulation of key proteins and variety of cellular processes controlled by proteins. The number and types of posttranslational modifications (PTMs) that a protein can accommodate at any given time can be staggering. The major types of PTMs frequently observed and well-studiedin eukaryotic cells include phosphorylation, glycosylation, acetylation, acylation, prenylation, methylation, ubiquitylation, and proteolytic cleavage. Enzymes dedicated to protein modifications are in the orders of thousands. An understanding of types and levels of PTMs of proteins and enzymes dedicated to this process should provide us with better opportunities to study protein function and diseases associated with aberrant modification of proteins.

___

  • Akatsuka, A., Singh, T.J., Huang, K.P., 1984. Phosphorylation of rat liver glycogen synthase by phosphorylase kinase. J Biol Chem 259, 7878- 7883.
  • Alt, J.R., Gladden, A.B., Diehl, J.A., 2002. p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 277, 8517-8523.
  • Annan, R.S., Zappacosta, F., 2005. Protein posttranslational modifications: phosphorylation site analysis using mass spectrometry. Methods Biochem Anal 45, 85-106.
  • Arozarena, I., Calvo, F., Crespo, P., 2011. Ras, an actor on many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2, 182-194.
  • Bai, G., Zhang, Z.J., Werner, R., Nuttal, F.Q., Tan, A.W., Lee, E.Y., 1990. The primary structure of rat liver glycogen synthase deduced by cDNA cloning. Absence of phosphorylation sites 1a and 1b. J Biol Chem 265, 7843-7848.
  • Basso, A.D., Kirschmeier, P., Bishop, W.R., 2006. Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res 47, 15-31.
  • Bauzon, F., Zhu, L., 2010. Racing to block tumorigenesis after pRb loss: an innocuous point mutation wins with synthetic lethality. Cell Cycle 9, 2118-2123.
  • Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., Brunak, S., 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649.
  • Braakman, I., Bulleid, N.J., 2011. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80, 71-99.
  • Burlingame, A.L., Zhang, X., Chalkley, R.J., 2005. Mass spectrometric analysis of histone posttranslational modifications. Methods 36, 383- 394.
  • Carpenter, G.H., Proctor, G.B., 1999. O-linked glycosylation occurs on basic parotid salivary proline-rich proteins. Oral Microbiol Immunol 14, 309-315.
  • Case, N., Thomas, J., Sen, B., Styner, M., Xie, Z., Galibor, K., Rubin, J., 2011. Mechanical regulation of glycogen synthase kinase 3beta (GSK3beta) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein. J Biol Chem 286, 39450-39456.
  • Classon, B.J., Brown, M.H., Garnett, D., Somoza, C., Barclay, A.N., Willis, A.C., Williams, A.F., 1992. The hinge region of the CD8 alpha chain: structure, antigenicity, and utility in expression of immunoglobulin superfamily domains. Int Immunol 4, 215-225.
  • Cooper, G.M., 2000. The Cell: A Molecular Approach. Sunderland (MA): Sinauer Associates. (http://www.ncbi.nlm.nih.gov/books/NBK9839/)
  • Diehl, J.A., Cheng, M., Roussel, M.F., Sherr, C.J., 1998. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12, 3499-3511.
  • Dolence, J.M., Poulter, C.D., 1995. A mechanism for posttranslational modifications of proteins by yeast protein farnesyltransferase. Proc Natl Acad Sci U S A 92, 5008-5011.
  • Eastman, R.T., Buckner, F.S., Yokoyama, K., Gelb, M.H., Van Voorhis, W.C., 2006. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J Lipid Res 47, 233-240.
  • Eisenhaber, B., Eisenhaber, F., 2007. Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? Curr Protein Pept Sci 8, 197-203.
  • Eisenhaber, F., Eisenhaber, B., Kubina, W., Maurer-Stroh, S., Neuberger, G., Schneider, G., Wildpaner, M., 2003. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1. Nucleic Acids Res 31, 3631-3634.
  • Freitas, M., Axelsson, L.G., Cayuela, C., Midtvedt, T., Trugnan, G., 2005. Indigenous microbes and their soluble factors differentially modulate intestinal glycosylation steps in vivo. Use of a "lectin assay" to survey in vivo glycosylation changes. Histochem Cell Biol 124, 423-433.
  • Fuchs, O., Neuwirtova, R., 2006. [Ubiquitins, proteasomes, sumoylation and application today and in future for cancer and other diseases therapy II. Sumoylation and neddylation as posttranslational modifications of proteins and their ubiquitinylation and its significance]. Vnitr Lek 52, 619-627.
  • Funayama, R., Ishikawa, F., 2007. Cellular senescence and chromatin structure. Chromosoma 116, 431-440.
  • Garina, D.V., Kuz'mina, V.V., Gerasimov, Y.V., 2007. The effect of epinephrine on feeding and motion patterns in goldfish Carassius auratus (L.). Comp Biochem Physiol A Mol Integr Physiol 148, 544-549.
  • Germain, D., Russell, A., Thompson, A., Hendley, J., 2000. Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286. J Biol Chem 275, 12074-12079.
  • Hale, B.G., Knebel, A., Botting, C.H., Galloway, C.S., Precious, B.L., Jackson, D., Elliot, R.M., Randall, R.E., 2009. CDK/ERK-mediated phosphorylation of the human influenza A virus NS1 protein at threonine-215. Virology 383, 6- 11.
  • Hallenbeck, P.C., Walsh, D.A., 1986. Control of phosphorylase kinase in the isolated glycogen particle by Ca2+-Mg2+ synergistic activation and cAMP-dependent phosphorylation. J Biol Chem 261, 5442-5449.
  • Lau, P.P., Van Handel, M., Larvin, M., McMahon, M.J., Geokas, M.C., 1990. Proteolytic degradation of human recombinant proinsu- lin/insulin by sera from acute pancreatitis patients and complete inhibition by Eglin-C. Pancreas 5, 17-26.
  • Lodish, H., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J., 2000. Molecular Cell Biology. New York: W. H. Freeman
  • Israel, M., Schwartz, L., 2011. The metabolic advantage of tumor cells. Mol Cancer 10, 70.
  • Issad, T., Masson, E., Pagesy, P., 2010. O- GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab 36, 423- 435.
  • Jacob, T., Van den Broeke, C., Favoreel, H.W., 2011. Viral serine/threonine protein kinases. J Virol 85, 1158-1173.
  • Jensen, J., Gronning-Wang, L.M., Jebens, E., Whitehead, J.B., Zorec, R., Shepherd, P.R., 2008. Adrenaline potentiates insulin-stimulated PKB activation in the rat fast-twitch epitrochlearis muscle without affecting IRS-1-associated PI 3- kinase activity. Pflugers Arch 456, 969-978.
  • Jensen, J., Ruge, T., Lai, Y.C., Svensson, M.K., Eriksson, J.W., 2011. Effects of adrenaline on whole-body glucose metabolism and insulin- mediated regulation of glycogen synthase and PKB phosphorylation in human skeletal muscle. Metabolism 60, 215-226.
  • Jiang, S., Fang, Q., Zhang, F., Weisz, O.A., 2011. Functional characterization of insulin receptor gene mutations contributing to Rabson- Mendenhall syndrome - phenotypic heterogeneity of insulin receptor gene mutations. Endocr J 58, 931-940.
  • Johnson, L.N. 1992. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J 6, 2274-2282.
  • Johnson, L.N., Hu, S.H., Barford, D., 1992. Catalytic mechanism of glycogen phosphorylase. Faraday Discuss, 131-142.
  • Kikuchi, K., Yamada, T., Sugi, H., 2009. Effects of adrenaline on glycogenolysis in resting anaerobic frog muscles studied by 31P-NMR. J Physiol Sci 59, 439-446.
  • Ko, H.S., Lee, Y., Shin, J.H., Karuppagounder, S. S., Gadag, B.S., Koleske, A.J., Pletnikova, O., Troncoso, J.C., Dawson, V.L., Dawson, T.M., 2010. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A 107, 16691-16696.
  • Krueger, K.E., Srivastava, S., 2006. Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5, 1799-1810.
  • Kruse, J.P., Gu, W., 2008. SnapShot: p53 posttranslational modifications. Cell 133, 930- 930 e931.
  • Kutuk, O., Letai, A., 2008. Regulation of Bcl-2 family proteins by posttranslational modifications. Curr Mol Med 8, 102-118.
  • Lane, K.T., Beese, L.S., 2006. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47, 681-699.
  • Leung, K.F., Baron, R., Seabra, M.C., 2006. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res 47, 467-475.
  • Lippens, G., Landrieu, I., Hanoulle, X., 2008. Studying posttranslational modifications by in- cell NMR. Chem Biol 15, 311-312.
  • Lodish, H.F., 2000. Molecular cell biology. 4th ed. New York, NY ; Basingstoke: Freeman.
  • Lu, J.Y., Hofmann, S.L., 2006. Thematic review series: lipid posttranslational modifications. Lysosomal metabolism of lipid-modified proteins. J Lipid Res 47, 1352-1357.
  • Meek, D.W., Anderson, C.W., 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1, a000950.
  • Meng, X., Kondo, M., Morino, K., Fuke, T., Obata, T., Yoshizaki, T., Ugi, S., Nishio, Y., Maeda, S., Araki, E., Kashiwaqi, A., Maegawa, H., 2010. Transcription factor AP-2beta: a negative regulator of IRS-1 gene expression. Biochem Biophys Res Commun 392, 526-532.
  • Messner, P., 1997. Bacterial glycoproteins. Glycoconj J 14, 3-11.
  • Metallo, C.M., Vander Heiden, M.G., 2010. Metabolism strikes back: metabolic flux regulates cell signaling. Genes Dev 24, 2717-2722.
  • Moody, C.A., Laimins, L.A., 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10, 550-560.
  • Moran, A.P., Gupta, A., Joshi, L., 2011. Sweet- talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412-1425.
  • Nelson, D.L., Cox, M.M., Lehninger, A.L., 2008. Lehninger principles of biochemistry. 5th ed. New York; Basingstoke: W.H. Freeman.
  • Ng, S.Y., Chaban, B., Jarrell, K.F., 2006. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol 11, 167-191.
  • Nyman, U., Vlachos, P., Cascante, A., Hermanson, O., Zhivotovsky, B., Joseph, B., 2009. Protein kinase C-dependent phosphorylation regulates the cell cycle- inhibitory function of the p73 carboxy terminus transactivation domain. Mol Cell Biol 29, 1814- 1825.
  • Onishi, T., Iwashita, H., Uno, Y., Kunitomo, J., Saitoh, M., Kimura, E., Fujita, H., Uchiyama, N., Kori, M., Takizawa, M., 2011. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S )-methylsulfinyl]phenyl}-1-benzofuran-5-yl)- 1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer's disease. J Neurochem 119, 1330-1340.
  • Orlean, P., Menon, A.K., 2007. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48, 993- 1011.
  • Panda, A., Elankumaran, S., Krishnamurthy, S., Huang, Z., Samal, S.K., 2004. Loss of N-linked glycosylation from the hemagglutinin- neuraminidase protein alters virulence of Newcastle disease virus. J Virol 78, 4965-4975.
  • Plessmann, U., Reiter-Owona, I., Lechtreck, K.F., 2004. Posttranslational modifications of alpha-tubulin of Toxoplasma gondii. Parasitol Res 94, 386-389.
  • Pusztai, A., Ewen, S.W., Grant, G., Peumans, W.J., Van Damme, E.J., Coates, M.E., Bardocz, S., 1995. Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat. Glycoconj J 12, 22-35.
  • Rattan, S.I., Derventzi, A., Clark, B.F., 1992. Protein synthesis, posttranslational modifications, and aging. Ann N Y Acad Sci 663, 48-62.
  • Reed, U.C., 2009. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. Arq Neuropsiquiatr 67, 144- 168.
  • Reinders, J., Sickmann, A., 2007. Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 24, 169-177.
  • Resh, M.D., 2012. Targeting protein lipidation in disease. Trends Mol Med 18, 206-214.
  • Ribet, D., Cossart, P., 2010. Pathogen-mediated posttranslational modifications: A re-emerging field. Cell 143, 694-702.
  • Robers, M.B., Horton, R.A., Bercher, M.R., Vogel, K.W., Machleidt, T., 2008. High- throughput cellular assays for regulated posttranslational modifications. Anal Biochem 372, 189-197.
  • Rohrer, J., Kornfeld, R., 2001. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network. Mol Biol Cell 12, 1623-1631.
  • Roth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K.G., Le Fourn, V., Santimaria, R., Guhl, B., Cho, J.W., 2010. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30, 497-506.
  • Savitski, M.F., Savitski, M.M., 2010. Unbiased detection of posttranslational modifications using mass spectrometry. Methods Mol Biol 673, 203- 210.
  • Schrattenholz, A., Soskic, V., Groebe, K., 2010. Synchronization of posttranslational modifications during aging: Time is a crucial biological dimension. Ann N Y Acad Sci 1197, 118-128.
  • Schwarz, F., Aebi, M., 2011. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21, 576-582.
  • Shaheen, M., Shanmugam, I., Hromas, R., 2010. The Role of PCNA Posttranslational Modifications in Translesion Synthesis. J Nucleic Acids 2010.
  • Shao, J., Sheng, H., DuBois, R.N., Beauchamp, R.D., 2000. Oncogenic Ras-mediated cell growth arrest and apoptosis are associated with increased ubiquitin-dependent cyclin D1 degradation. J Biol Chem 275, 22916-22924.
  • Singh, T.J., Akatsuka, A., Huang, K.P., 1984. Comparison of the phosphorylation of rabbit skeletal muscle phosphorylase kinase by cAMP- dependent protein kinase and cAMP-independent glycogen synthase (casein) kinase-1. J Biol Chem 259, 12857-12864.
  • Takao, T., Shimizu, T., Ikegami, S., Shimonishi, Y., 1997. High-sensitivity mass spectrometry for analysis of posttranslational modifications. J Protein Chem 16, 409-413.
  • Tandon, R., Kapoor, S., Vali, S. Senthil, V., Nithya, D., Venkataramanan, R., Sharma, A., Talwadkar, A., Ray, A., Bhatnagar, P.K., Dasti- dar, S.G., 2011. Dual epidermal growth factor receptor (EGFR)/insulin-like growth factor-1 receptor (IGF-1R) inhibitor: a novel approach for overcoming resistance in anticancer treatment. Eur J Pharmacol 667, 56-65.
  • Varela, R., Martinez-Costas, J., Mallo, M., Benavente, J., 1996. Intracellular posttranslational modifications of S1133 avian reovirus proteins. J Virol 70, 2974-2981.
  • Veenstra, T.D., 2003. Proteome analysis of posttranslational modifications. Adv Protein Chem 65, 161-194.
  • Walsh, C.T., 2005. Posttranslational Modifications of Proteins: Expanding Nature`s Inventory. Colorado: Roberts and Company Publishers.
  • Walsh, C.T., Garneau-Tsodikova, S., Gatto, G.J., 2005. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44, 7342-7372.
  • Wright, L.P., Philips, M.R., 2006. Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47, 883- 891.
  • Yamada-Okabe, T., Doi, R., Yamada-Okabe, H., 1996. Normal and transforming Ras are differently regulated modifications. J Cell Biochem 61, 172-181.
  • for posttranslational
  • Yang, K., Guo, Y., Stacey, W.C. Harwalkar, J., Fretthold, J., Hitomi, M., Stacey, D.W., 2006. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels. BMC Cell Biol 7, 33.
  • Yang, W., Zhang, Y., Li, Y., Wu, Z., Zhu, D., 2007. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 282, 3799-3808.
  • Yang, X.J., Seto, E., 2008. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31, 449-461.
  • Yao, X.Q., Zhang, X.X., Yin, Y.Y., Liu, B., Luo, D.J., Liu, D., Chen, N.N., Ni, Z.F., Wang, X., Wang, Q., Wang, J.Z., Liu, G.P., 2011. Glycogen synthase kinase-3beta regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src. Biochem J 437, 335-344.