Preparation of self-flocculated solid lipid nanoparticles

Preparation of self-flocculated solid lipid nanoparticles

The objective of this study was to verify the effect of certain new biocompatible additive on the stability and feasibility of the SLN using Glyceryl monostearate as lipid matrix. Cationic Starch, which is newly modified in organic chemistry laboratories, used with different ratios to show the effect on zeta potential of formulated nanoparticles using Triamcinolone acetonide as a model drug. Method of High shear homogenization was used for preparation of SLN utilizing a rotor-stator homogenizer. It was found that particle diameter of formulated nanoparticles shifted from nanosized to micronized with increase of amount of cationic starch used (2.5 to 10% w/w), while the zeta potential reduced although showing high negative values (-36 to -27 mV), indicating stability. The loading capacity and encapsulation efficiency of produced nanoparticles were reduced with increase of amount of cationic starch used. The influence of cationic starch on drug release from prepared formulae was studied using dialysis bag technique. Fourier Transformation Infrared Spectroscopy (FTIR) showed the absence of new bands for loaded solid lipid nanoparticles indicating no interaction between drug and cationic starch. Electron microscope of scanning technique indicated sphere form of prepared solid lipid nanoparticles with smooth surface. It was concluded that retardation of in vitro release and effect on simulated in vivo permeation through human skin were affected by using different concentrations of cationic starch as excipient that meantime, be used to reduce zeta potential and act as self-flocculating agent during formulation.

___

  • Pal S, Sen G, Carmaker NC, Mal D, Singh RP. High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension. Carbohyd Polym. 2008; 74(3): 590-596. [CrossRef]
  • Krentz D, Lohmann C, Schwarz S, Bratskaya S, Liebert T, Laube J, HeinzeT, Kulicke W. Properties and Flocculation Efficiency of Highly Cationized Starch Derivatives. Starch – Stärke. 2006; 58(3-4): 161–169. [CrossRef]
  • You L, Lu F, Li D, Qiao Z, Yin Y. Preparation and flocculation properties of cationic starch/chitosan crosslinkingcopolymer. J Hazard Mater. 2009; 172 (1): 38-45. [CrossRef]
  • Jiang X, Qi Y, Wang S, Tian X. New amphoteric flocculant containing beta-cyclodextrin, synthesis, characterization and decolorization properties. J Hazard Mater. 2010; 173(1–3): 298-304. [CrossRef]
  • Chang Y, Choi H, Kim H, Lee H, Kim W, Kim D, Kim B, Baik M. Physicochemical properties of granular and non-granular cationic starches prepared under ultra-high pressure. Carbohyd Polym. 2014; 99:385-393. [CrossRef]
  • Pal S, Mal D, Singh RP. Cationic starch: an effective flocculating agent. Carbohyd Polym. 2005; 59(4): 417-423. [CrossRef]
  • Wei Y, Cheng F, Zheng H. Synthesis and flocculating properties of cationic starch derivatives. Carbohyd Polym. 2008; 74(3): 673-679. [CrossRef]
  • Zhang B, Ni B, Lü S, Cui D, Liu M, Gong H, Han F. Synthesis and characterization of a novel potato starch derivative with cationic acetylcholine groups. Int J Biol Macromol. 2012; 50(3): 701-706. [CrossRef]
  • Pi-xin W, Xiu-li W, Xue D, Xu K, Tan Y, Du X, Li W. Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane–THF–water media. Carbohyd Res. 2009; 344(7): 851-855. [CrossRef]
  • Raghavendra CM, Ramesh B, Vidhya R, Pradip P, Tejraj MA. Nano/microTechnologies for Delivering Macromolecular Therapeutics using Poly (d, l-lactide-coglycolide) and its Derivative. J Control Rel. 2008; 125:193-209. [CrossRef]
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000; 50: 161-177. [CrossRef]
  • Kavaliauskaite R, Klimaviciute R, Zemaitaitis A. Factors influencing production of cationic starches. Carbohyd Polym. 2008; 73(4,5): 665-675. [CrossRef]
  • Gardouh A R, Gad S, Ghonaim H M, Ghorab M M. Design and Characterization of Glyceryl Monostearate Solid Lipid Nanoparticles Prepared by High Shear Homogenization. Br J Pharm Res. 2013; 3(3): 326-346.
  • Mehnert W, Mader K. Solid lipid Nanoparticles production, characterization and applications. Adv Drug Deliv Reviews. 2001; 47: 165-196. [CrossRef]
  • Attama AA, Muller- Goymann CC. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Coll Surf A Physiochem Eng Aspects. 2008; 315: 189-195. [CrossRef]
  • Abdelbary G, FahmyR H. Diazepam-Loaded Solid Lipid Nanoparticles: Design and Characterization. AAPS Pharm SciTech. 2009; 10(1): 211-219. [CrossRef]
  • Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and Evaluation of Miconazole Nitrate-Loaded Solid Lipid Nanoparticles for Topical Delivery. AAPS Pharm Sci Tech. 2009; 10(1): 289-296. [CrossRef]
  • British pharmacopoeia. Commission office. British pharmacopoeia. The stationary Office, London; 2009.
  • Feng W, Jian Y, Yu S, Xing-Guo Z, Fu-De C, Yong-Zhong D, Hong Y, Fu-Qiang H. Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): Preparation and evaluation in vitro. Int J Pharm. 2008; 359: 104-110. [CrossRef]
  • Almeida AJ, Runge S, Muller RH. Peptide –loaded solid lipid Nanoparticles (SLN): influence of production parameters. Int J Pharm. 1997; 149: 255- 265. [CrossRef]
  • Lim S, Kim C. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002; 243: 135-146. [CrossRef]
  • Harivardhan Reddy L, Murthy R S. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPS Pharm Sci Tech. 2005; 6(2): E58-E166. [CrossRef]
  • Xiang L, Shu-fang N, Jun K, Ning L, Cheng-yi J, Wei-san P. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008; 363: 177-182. [CrossRef]
  • Kim BD, Na K, Choi HK. Preparation and characterization of solid lipid Nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci. 2005; 24: 199-205. [CrossRef]
  • Ghorab MM, Abdel-salam HM, Abdel-Moaty MM. Solid lipid Nanoparticles-effect of lipid matrix and surfactant on their physical characteristics. Bull Pharm Sci, Assiut Uni. 2004; 27: 155-159.
  • Bisrat M, Anderberg EK, Barnett M I, Nyström C. Physicochemical aspects of drug release. XV. Investigation of diffusional transport in dissolution of suspended, sparingly soluble drugs. Int J Pharm. 1992; 80(1-3): 191-201. [CrossRef]
  • Pretsch E, Bühlmann P, Badertscher M. IR Spectroscopy. Structure Determination of Organic Compounds 2000; 267-320: Springer, Berlin Heidelberg.
  • Da Silva-Junior AA, De Matos JR, Formariz TP, Rossanezi G, Scarpa MV, Do Egito EST, De Oliveira AG. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. Int J Pharm. 2009; 368: 45–55. [CrossRef]
  • Ansari M, Kazemipour M, Aklamli M. The study of drug permeation through natural membranes. Int J Pharm. 2006; 327: 6–11. [CrossRef]
  • Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticles and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003; 56: 189-196. [CrossRef]
  • Jain SK, Chourasia MK, Masuriha R, Soni V, Jain A, Jain NK, Gupta Y. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Del. 2005; 12: 207-215. [CrossRef]
  • Maia CS, MehnertW, Schaller M, Korting HC, Gysler A, Haberland A, Schafer-Korting M. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target. 2002; 10: 489-495. [CrossRef]
  • Chen H, Chang X, Du D, Liu W, Liu J, Weng T, Yang Y, Xu H, Yang X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Rel. 2006; 110:296-306. [CrossRef]
  • Lopes LB, Ferreira DA, Paula D, Garcia MJ, Thomazini JA, Fantini MA, Bentley MB. Reverse hexagonal phase Nano dispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of Cyclosporin A. Pharm Res. 2006; 23: 1332-1342. [CrossRef]
  • Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007; 328: 191-195. [CrossRef]
  • Kumar AS, Abhijit AD, Medha DJ, Vandana BP. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int J Pharm. 2007; 345: 163-171. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Anti-inflammatory effects of Lycium barbarum leaf extracts in lipopolysaccharide-induced RAW 264.7 macrophage cells and isolation of secondary metabolites

Hande SİPAHİ, Hasan KIRMIZIBEKMEZ, Ozan ŞEN, Beril KADIOĞLU YAMAN, Aycan SALMA, Norbert KUSZ, Judit HOHMANN

Preparation of self-flocculated solid lipid nanoparticles

Ahmed GARDOUH, El-Sayed KHAFAGY, Mogamed ELKADY

Synthesis, characterization and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives

Hasan Erdinç SELLİTEPE, Gamze EROĞLU, İnci Selin DOĞAN, Burak BARUT, Arzu ÖZEL

In vitro cytotoxicity evaluation of Marrubium vulgare L. methanol extract

Mehmet Evren OKUR, Ayşe Esra KARADAĞ, Nihal KARAKAŞ, Fatih DEMİRCİ, Rabia YILMAZ

Preparation and in vitro characterization of AL-Beads containing carbamazepine and/or levetiracetam

Meltem ÇETİN, Afife, Büşra KANDİLLİ, Fatma DEMİRKAYA

Resveratrol treatment reduces apoptosis and morphological alterations in cisplatin induced testis damage

Nagehan ÖZYILMAZ YAY, Feriha ERCAN, Göksel ŞENER

Inhibitory activity of Lactobacillus plantarum ATCC 8014 fermented milk combined with aqueous extract of Moringa oleifera leaves against Streptococcus mutans

Idha KUSUMAWATİ, Isnaeni ISNAENİ, Agustin MAULİDİNA, Erni Maduratna

Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants

İlkay ERDOĞAN ORHAN, Didem DELİORMAN ORHAN, Nilüfer ORHAN, Mustafa ASLAN, Hasya Nazlı EKİN

Morphology, myxocarpy, mineral content and in vitro antimicrobial and antiproliferative activities of mericarps of the vulnerable Turkish endemic Salvia pilifera

Mahmut ÜLGER, İbrahim BOZGEYİK, Özkan SARIKAYA, Sevda GÜZEL, Yusuf ÖZAY, Ahmet KAHRAMAN

Attenuation of intestinal efflux pump thru polymers and preservatives

Bahman YOUSEFI, Hadi VALIZADEH, Parvin ZAKERI MILANI, Ramin MOHAMMADZADEH, Behzad BARADARAN