Multicomponent crystals of mefenamic acid–tromethamine with improved dissolution rate

Multicomponent crystals of mefenamic acid–tromethamine with improved dissolution rate

Mefenamic acid (MA) is a popular nonsteroidal anti-inflammatory drug classified into BCS class II which has a low solubility and dissolution rate in an aqueous medium. The present study aimed to improve the dissolution rate of MA by preparing multicomponent crystals with tromethamine (TM) through the solvent evaporation technique. The resulting powder was characterized for its solid-state properties and evaluated for the dissolution rate. The results showed that the powder X-ray diffraction pattern of the MA–TM binary system was different from its starting materials, indicating the formation of a new crystalline phase. The differential scanning calorimetry analysis of the MA–TM binary system showed a single and sharp endothermic peak at 110 °C, which was attributed to the melting point of MA–TM multicomponent crystals. The Fourier transform infrared spectroscopy analysis showed the occurrence of solid-state interaction involving proton transfer between MA and TM. The dissolution efficiency of MA–TM multicomponent crystal was 2.5-fold higher than the intact MA. The study concludes that the MA–TM binary system forms a salt-type multicomponent crystal. The multicomponent crystals can significantly increase its dissolution rate and is an alternative technique for modifying the physicochemical properties of active pharmaceutical ingredients.

___

  • Cimolai N. The potential and promise of mefenamic acid. Expert Rev Clin Pharmacol. 2013; 6(3): 289-305. [CrossRef]
  • Joo Y, Kim HS, Woo RS, Park CH, Shin KY, Lee JP, Chang KA, Kim S, Suh YH. Mefenamic acid shows neuroprotective effects and improves cognitive impairment in in vitro and in vivo alzheimer’s disease models. Mol Pharmacol. 2005; 69(1): 76-84. [CrossRef]
  • Rawashdeh NM, Najib NM, Jalal IM. Comparative bioavailability of two capsule formulations of mefenamic acid. Int J Clin Pharmacol Ther. 1997; 35(8): 329-333.
  • Konnerth C, Braig V, Ito A, Schmidt J, Lee G, Peukert W. Formation of mefenamic acid nanocrystals with improved dissolution characteristics. Chemie Ing Tech. 2017; 89(8): 1060-1071. [CrossRef]
  • Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012; 14(4): 703-713. [CrossRef]
  • Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J Clin Pharmacol. 2002; 42(6): 620-643. [CrossRef]
  • Zolkepali NK, Abu bakar NF, Naim MN, Anuar N, Kamalul Aripin NF, Abu Bakar MR, Lenggoro IW, Kamiya H. Formation of fine and encapsulated mefenamic acid form I particles for dissolution improvement via electrospray method. Part Sci Technol. 2018; 36(3): 298-307. [CrossRef]
  • Andrews GP, Zhai H, Tipping S, Jones DS. Characterisation of the thermal, spectroscopic and drug dissolution properties of mefenamic acid and polyoxyethylene–polyoxypropylene solid dispersions. J Pharm Sci. 2009; 98(12): 4545-4556. [CrossRef]
  • Derle D V, Bele M, Kasliwal N. In vitro and in vivo evaluation of mefenamic acid and its complexes with βCyclodextrin and HP-β-Cyclodextrin. Asian J Pharm. 2008; 2(1): 30-34.
  • Sriamornsak P, Limmatvapirat S, Piriyaprasarth S, Mansukmanee P, Huang Z. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution. Asian J Pharm Sci. 2015; 10(2): 121-127. [CrossRef]
  • Fang L, Numajiri S, Kobayashi D, Ueda H, Nakayama K, Miyamae H, Morimoto Y. Physicochemical and crystallographic characterization of mefenamic acid complexes with alkanolamines. J Pharm Sci. 2004; 93(1): 144-154. [CrossRef]
  • Kaival P, Kulkarni PK, Dixit M, Kni AG. Influence of surfactants on crystal form of mefenamic acid. Thai J Pharm Sci 2011; 35(1): 40–50.
  • Dixit M, Kini AG, Kulkarni PK. Enhancing the dissolution of polymorphs I and II of mefenamic acid by spray drying. Turkish J Pharm Sci 2012; 9(1): 13–26.
  • Dixit M, Kulkarni PK. Enhancing solubility and dissolution of Mefenamic acid by freeze drying. Elixir Bio Phys 2011; 39: 5026–5029.
  • Huang L-F, Tong W-Q. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004; 56(3): 321-334. [CrossRef]
  • Byrn SR, Zografi G, Chen XS. Accelerating proof of concept for small molecule drugs using solid-state chemistry. J Pharm Sci. 2010; 99(9): 3665-3675. [CrossRef]
  • Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007; 59(7): 617-630. [CrossRef]
  • Dwichandra Putra O, Umeda D, Fujita E, Haraguchi T, Uchida T, Yonemochi E, Uekusa H. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics. 2018; 10(2): 64. [CrossRef]
  • Ainurofiq A, Mauludin R, Mudhakir D, Umeda D, Soewandhi SN, Putra OD, Yonemochi E. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018; 111: 65-72. [CrossRef]
  • Nugrahani I, Utami D, Ibrahim S, Nugraha YP, Uekusa H. Zwitterionic cocrystal of diclofenac and l -proline: Structure determination, solubility, kinetics of cocrystallization, and stability study. Eur J Pharm Sci. 2018; 117: 168176. [CrossRef]
  • Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri L, Pratiwi Y, Arifin H. Cocrystal of ibuprofen–nicotinamide: Solidstate characterization and in vivo analgesic activity evaluation. Sci Pharm. 2018; 86(2): 23. [CrossRef]
  • Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and nmethyl-d-glucamine: Crystal structures and dissolution study. J Pharm Sci. 2019; 108(7): 2341-2348. [CrossRef]
  • Abdelkader H, Abdallah OY, Salem HS. Comparison of the effect of tromethamine and polyvinylpyrrolidone on dissolution properties and analgesic effect of nimesulide. AAPS PharmSciTech. 2007; 8(3): E110-E117. [CrossRef]
  • Bruni G, Berbenni V, Maggi L, Mustarelli P, Friuli V, Ferrara C, Pardi F, Castagna F, Girella A, Milanese C, Marini A. Multicomponent crystals of gliclazide and tromethamine: preparation, physico-chemical, and pharmaceutical characterization. Drug Dev Ind Pharm. 2018; 44(2): 243-250. [CrossRef]
  • Garekani HA, Sadeghi F, Badiee A, Mostafa SA, Rajabi-Siahboomi AR, Rajabi-Siahboomi AR. Crystal habit modifications of ibuprofen and their physicomechanical characteristics. Drug Dev Ind Pharm. 2001; 27(8): 803-809. [CrossRef]
  • York P, Paradkar A. Crystal engineering and particle design for the powder compaction process. In: Pharmaceutical Powder Compaction Technology. 2nd Ed. CRC Press; 2016: 248-265.
  • Basavoju S, Boström D, Velaga SP. Indomethacin–Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharm Res. 2008; 25(3): 530-541. [CrossRef]
  • Zaini E, Sumirtapura YC, Soewandhi SN, Halim A, Uekusa H, Fujii K. Cocrystalline phase transformation of binary mixture of trimethoprim and sulfamethoxazole by slurry technique. Asian J Pharm Clin Res. 2010; 3(4): 26-29.
  • Aitipamula S, Vangala VR. X-ray crystallography and its role in understanding the physicochemical properties of pharmaceutical cocrystals. J Indian Inst Sci. 2017; 97(2): 227-243. [CrossRef]
  • Kato F, Otsuka M, Matsuda Y. Kinetic study of the transformation of mefenamic acid polymorphs in various solvents and under high humidity conditions. Int J Pharm. 2006; 321(1-2): 18-26. [CrossRef]
  • Grothe E, Meekes H, Vlieg E, ter Horst JH, de Gelder R. Solvates, salts, and cocrystals: A proposal for a feasible classification system. Cryst Growth Des. 2016; 16(6): 3237-3243. [CrossRef]
  • Cruz-Cabeza AJ. Acid-base crystalline complexes and the pKa rule. CrystEngComm. 2012; 14(20): 6362. [CrossRef]
  • Bookwala M, Thipsay P, Ross S, Zhang F, Bandari S, Repka MA. Preparation of a crystalline salt of indomethacin and tromethamine by hot melt extrusion technology. Eur J Pharm Biopharm. 2018; 131: 109-119. [CrossRef]
  • Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008. [CrossRef]
  • Dwichandra Putra O, Yonemochi E, Uekusa H. Isostructural multicomponent gliclazide crystals with improved solubility. Cryst Growth Des. 2016; 16(11): 6568-6573. [CrossRef]
  • Katritzky AR, Jain R, Lomaka A, Petrukhin R, Maran U, Karelson M. Perspective on the relationship between melting points and chemical structure. Cryst Growth Des. 2001; 1(4): 261-265. [CrossRef]
  • Putra OD, Umeda D, Nugraha YP, Furuishi T, Nagase H, Fukuzawa K, Uekusa H, Yonemochi E. Solubility improvement of epalrestat by layered structure formation via cocrystallization. Cryst Eng Commun. 2017; 19(19): 2614-2622. [CrossRef]
  • Topacli A, Ide S. Molecular structures of metal complexes with mefenamic acid. J Pharm Biomed Anal. 1999; 21(5): 975-982. [CrossRef]
  • Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2011; 420(1): 110. [CrossRef]
  • Adam A, Schrimpl L, Schmidt PC. Some physicochemical properties of mefenamic acid. Drug Dev Ind Pharm. 2000; 26(5): 477-487. [CrossRef]
  • Shinkuma D, Hamaguchi T, Yamanaka Y, Mizuno N. Correlation between dissolution rate and bioavailability of different commercial mefenamic acid capsules. Int J Pharm. 1984; 21(2): 187-200. [CrossRef]
  • Romero S, Escalera B, Bustamante P. Solubility behavior of polymorphs I and II of mefenamic acid in solvent mixtures. Int J Pharm. 1999; 178(2): 193-202. [CrossRef]
  • Otsuka M, Kato F, Matsuda Y. Effect of temperature and kneading solution on polymorphic transformation of mefenamic acid during granulation. Solid State Ionics. 2004; 172(1-4): 451-453. [CrossRef]
  • SeethaLekshmi S, Guru Row TN. Conformational Polymorphism in a Non-steroidal Anti-inflammatory Drug, Mefenamic Acid. Cryst Growth Des. 2012; 12(8): 4283-4289. [CrossRef]
  • Fábián L, Hamill N, Eccles KS, Moynihan HA, Maguire AR, McCausland L, Lawrence SE. Cocrystals of Fenamic Acids with Nicotinamide. Cryst Growth Des. 2011; 11(8): 3522-3528. [CrossRef]
  • Nechipadappu SK, Trivedi DR. Structural and physicochemical characterization of pyridine derivative salts of antiinflammatory drugs. J Mol Struct. 2017; 1141: 64-74. [CrossRef]
  • Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975; 27(1): 48-49. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Cochlear electrophysiology and histopathology of rats exposed to intratympanic silica nanoparticles

Erkan ÖZBAY, Yusuf VAYISOĞLU, Önder ALBAYRAK, Ülkü ÇÖMELEKOĞLU, Derya Ümit TALAŞ, Döndü Anış DENİZ, Burcu DEMİRBAĞ, Rabia BOZDOĞAN ARPACI

Chemical characterization and antioxidant activity of Eryngium pseudothoriifolium and E. thorifolium essential oils

Mehmet Emin DURU, Gülsen TEL ÇAYAN

A facile in silico drug design strategy based on reference listed drugs and computational modeling of novel anticancer therapeutics

Asha THOMAS, Ghansham MORE, Sohan CHITLANGE, Manoj DAMALE, Rabindra NANDA

Optimization and evaluation of cyclosporine A nanosuspension stabilized by combination stabilizers using high pressure homogenization method

Sıla GÜLBAĞ PINAR, Nevin ÇELEBİ

Preparation and in vitro characterization of etofenamate emulgels using quality by design

Buket AKSU, Özgen ÖZER, Sakine TUNCAY TANRIVERDİ, Gülşen YILMAZ, Gizem YEĞEN

Stabilization of hydrochlorothiazide nanocrystals using fibroin

Namdeo JADHAV, Rani DHOLE, Udaykumar PATIL

Development of dry powder inhaler formulations for drug delivery systems

Yağmur AKDAĞ

The role of the clinical pharmacist in patient education and monitoring of patients under warfarin treatment

Songül TEZCAN, Rezzan Deniz ACAR, Nilay AKSOY, Fikret Vehbi IZZETTİN, Sevda ÇELİK, Mesut SANCAR, Muhammed Yunus BEKTAY

Cytotoxic effect of N-acetyl cysteine in DU145 human prostate cancer cells

Hasan ALHASAN, Elçin ÇAKIR, Ülkü ÇÖMELEKOĞLU, Emine Ecem ÇAKIR

Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria

Mohammadreza ARDALAN, Elham AHMADIAN, Sepideh ZUNUNI VAHED, Rovshan KHALILOV