Isolation and characterization of chemical constituentsfrom the mushroom Clitocybe nebularis

Isolation and characterization of chemical constituentsfrom the mushroom Clitocybe nebularis

In the course of our mycochemical studies the extract of Clitocybe nebularis was investigated with the aim to identify its bioactive secondary metabolites. Multistep chromatographic purification of the MeOH extract of C. nebularis resulted in the isolation of two steroids and an organic acid from the CHCl3 and ethyl acetate soluble fractions. The structures of the compounds were determined by NMR and MS spectroscopy as 5α-ergosta-7,22-diene-3β,5,6β-triol (cerevisterol) (1), (22E,24S)-5α-ergosta-7,22-diene-3β,5,6β,9α-tetraol (2), and indole-3-carboxylic acid (3). The antimicrobial activity of the compounds was analyzed by agar disc diffusion method against human pathogen strains of Streptococcus agalactiae, Staphylococcus epidermidis, Moraxella catarrhalis, Haemophilus influenzae, and Proteus mirabilis. The susceptibility assay revealed that compounds 2 and 3 have weak antimicrobial activity against M. catarrhalis. The current study represents the first isolation of compounds 1–3 from C. nebularis.

___

  • [1] Knudsen H, Vesterholt J. Funga Nordica. (Vol 2). Agaricoid, Boletoid, Clavarioid, Cyphelloid and Gastroid Genera. Nordsvamp, Copenhagen: 2012. p. 1083.
  • [2] Desjardin DE, Wood MG, Stevens FA. California Mushrooms: The Comprehensive Identification Guide: Timber Press, New York, 2015. pp. 152-153.
  • [3] Kummer P. Dur Führer in die Pilzkunde. In: Luppe‘s Buchhandlung, Zerbst, 1871. pp. 1-146.
  • [4] Kosanić M, Petrović N, Stanojković T. Bioactive properties of Clitocybe geotropa and Clitocybe nebularis. J Food Meas Charact. 2020; 14: 1046-1053. [CrossRef]
  • [5] Bézivin C, Lohézic F, Sauleau P, Amoros M, Boustie J. Cytotoxic activity of Tricholomatales determined with murine and human cancer cell lines. Pharm Biol. 2002; 40: 196-199. [CrossRef]
  • [6] Pohleven J, Obermajer N, Sabotič J, Anžlovar S, Sepčić K, Kos J, Brzin J. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta. 2009; 1790: 173-181. [CrossRef]
  • [7] Lofgren N, Luning B. On the structure of nebularine. Acta Chem Scandinav. 1953; 7: 225.
  • [8] Konuk M, Akyol O, Yilmaz K, Yildirimkaya M, Nazaroglu NK, Kisa U. Blocking of the inhibitory effect of nebularine on xanthine oxidase. Biyokim Derg 1996; 21: 9-15.
  • [9] Brown EG, Konuk M. Plant cytotoxicity of nebularine (purine riboside). Phytochemistry. 1994; 37: 1589-1592. [CrossRef]
  • [10] Kim Y-S, Lee I-K, Seok S-J, Yun B-S. Chemical constituents of the fruiting bodies of Clitocybe nebularis and their antifungal activity. Mycobiology 2008; 36: 110-113.
  • [11] Venturini M, Rivera C, Gonzalez C, Blanco D. Antimicrobial activity of extracts of edible wild and cultivated mushrooms against foodborne bacterial strains. J Food Protect. 2008; 71: 1701-1706. [CrossRef]
  • [12] Brzin JE, Rogelj B, Popovic̆T, Štrukelj B, Ritonja A. Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom Clitocybe nebularis. J Biol Chem. 2000; 275: 20104-20109. [CrossRef]
  • [13] Sabotič J, Kos J. CNL – Clitocybe nebularis lectin—the fungal GalNAcβ1-4GlcNAc-binding lectin. Molecules. 2019; 24: 4204. [CrossRef]
  • [14] Caglič PA, Renko M, Turk D, Kos J, Sabotič J. Fungal β-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the β-trefoil fold. Biochim Biophys Acta Proteins Proteom. 2014; 844: 1749-1756. [CrossRef]
  • [15] Senatore F. Chemical constituents of some mushrooms. J Sci Food Agric. 1992; 58: 499-503. [CrossRef]
  • [16] Audouin P, Vidal J, Richard H. Volatile compounds from aroma of some edible mushrooms: morel (Morchella conica) wood blewitt (Lepista nuda), clouded agaric (Clitocybe nebularis), and false chanterelle (Hygrophoropsis aurantiaca). Sci Alim. 1989; 185-193.
  • [17] Jinming G, Lin H, Jikai L. A novel sterol from Chinese truffles Tuber indicum. Steroids. 2001; 66: 771-775. [CrossRef]
  • [18] Valisolalao J, Luu B, Ourisson G. Chemical and biochemical study of Chinese drugs. Part VIII. Cytotoxic steroids from Polyporus versicolor. Tetrahedron. 1983; 39: 2779-85. [CrossRef] [19] Burton G, Ghini AA, Gros EG. 13C NMR spectra of substituted indoles. Magn Reson Chem. 1986; 24: 829-831. [CrossRef]
  • [20] Wang H, Ng T. Isolation of a new ribonuclease from fruiting bodies of the silver plate mushroom Clitocybe maxima. Peptides. 2004; 25: 935-939. [CrossRef]
  • [21] Zhang G-Q, Wang Y-F, Zhang X-Q, Ng TB, Wang H-X. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Procs Biochem. 2010; 45: 627-633. [CrossRef]
  • [22] Baosong C, Sixian W, Gaoqiang L, Li B, Ying H, Ruilin Z, Hongwei L. Anti-inflammatory diterpenes and steroids from peels of the cultivated edible mushroom Wolfiporia cocos. Phytochem Lett. 2020; 36: 11-16. [CrossRef]
  • [23] Ragasa CY, Tan MCS, De Castro ME, Mariquit M, Oyong GG, Shen CC. Sterols from Lentinus tigrinus. Pharmacog J. 2018; 10: 1079-1081.
  • [24] Ohnuma N, Amemiy, K, Kakuda R, Yaoita Y, Machida K, Kikuchi M. Sterol constituents from two edible mushrooms, Lentinula edodes and Tricholoma matsutake. Chem Pharm Bul. 2000; 48: 749-751. [CrossRef]
  • [25] Morelli I, Pistelli L, Catalano S. Some constituents of Clitocybe nebularis and of Hydnum repandum. Fitoterapia. 1981; 52: 45-47.
  • [26] Chen JT, Su HJ, Huang JW. Isolation and identification of secondary metabolites of Clitocybe nuda responsible for inhibition of zoospore germination of Phytophthora capsici. J Agric Food Chem. 2012; 60: 7341–7344. [CrossRef]doi.org/
  • [27] Fons F, Rapior S, Fruchier A, Saviuc P, Bessière JM. Volatile composition of Clitocybe amoenolens, Tricholoma caligatum and Hebeloma radicosum. Cryptogamie Mycol. 2006; 27: 45-55.
  • [28] Dimitrijevic M, Jovanovic VS, Cvetkovic J, Mihajilov-Krstev T, Stojanovic G, Mitic V. Screening of antioxidant, antimicrobial and antiradical activities of twelve selected Serbian wild mushrooms. Anal Methods. 2015; 7: 4181-4191. [CrossRef]
  • [29] Appiah T, Agyare C, Luo Y, Boamah VE, Boakye YD. Antimicrobial and resistance modifying activities of cerevisterol isolated from Trametes species. Curr Bioact Compd. 2020; 16: 115-123. [CrossRef]
  • [30] Guoa K, Fanga H, Guia F, Wang Y, Xua Q, Deng X. Two new ring A-ceaved lanostane-type triterpenoids and four known steroids isolated from endophytic fungus Glomerella sp. Helv Chim Acta 2016; 99: 601–607. [CrossRef]
  • [31] Tian S, Yang Y, Liu K, Xiong Z, Xu L, Zhao L. Antimicrobial metabolites from a novel halophilic actinomycete Nocardiopsis terrae YIM 90022. Nat Prod Res. 2014; 28: 344–346. [CrossRef]
  • [32] Bauer A, Kirby W, Sherris J, Turck M. Antimicrobial investigations. Am J Clin Pathol. 1966; 45: 493-496.
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Phytochemical analysis, antioxidant and anticanceractivities of durian (Durio zibethinus Murr.) fruit extract

Vadivel SAMINATHAN, Ravi DORAISWAMY

Isolation and characterization of chemical constituentsfrom the mushroom Clitocybe nebularis

Judit HOHMANN, Andrea LÁZÁR, Morteza YAZDANI, Attila VÁNYOLÓS, Zoltán BÉNI, Miklós DÉKÁNY, Viktor PAPP, Katalin BURIÁN

Myrtus communis extract ameliorates high-fat diet inducedbrain damage and cognitive function

Dilek ÖZBEYLİ, Büşra ERTAŞ, Göksel ŞENER, Selin ŞAKARCAN, Gizem YARIMBAŞ, Ali ŞEN

Sodium current inhibitor ranolazine amelioratesexperimentally induced diabetic cardiomyopathy

Tejal GANDHI, Anjali SINGH, Anjali PATEL, Prachi KARIA, Hital SHAH

Crocin suppressed cold allodynia and anxiety through α2- adrenoceptors in the anterior cingulate cortex followingchronic constriction injury of sciatic nerve in rats

Mohammad Reza ZOHREHVAND, Reza KAZEMI, Mohammad Hassan MIRASHEH, Mohammad Ali ZABIHIAN, Farideh BAHRAMI, Zahra BAHARI, Gholam Hossein MEFTAHI, Mehdi RAHIMI NASRABADI

A comparative study of phenolic profiles and biologicalactivities of Allium sphaerocephalon L. subsp.sphaerocephalon L. and Allium sphaerocephalon L. subsp.trachypus (Boiss. Et Spruner) K. Richter

Ceren EMİR, Ahmet EMİR

Ocular delivery of ketorolac tromethamine usingmicroemulsion as a vehicle: Design, evaluation, andtranscorneal permeation

Anayatollah SALIMI, Marzieh BEHROUZIFAR

Development and characterization of cationicnanoemulsions as non-viral vectors for plasmid DNAdelivery

Yücel BAŞPINAR, Hasan AKBABA, Selen İSAR, Gülşah EREL AKBABA

Screening the antimicrobial effect of ferrocene-boronicacid on Pseudomonas aeruginosa using proteomics andmetabolomics approach

Ceren ÖZKUL, Gülce TAŞKOR ÖNEL, Engin KOÇAK, Sedef KIR, Meral SAĞIROĞLU, Emirhan NEMUTLU

Development and characterization of camphor-loadedozonated olive oil nanoemulsions

Tahir Emre YALÇIN, Sevgi TAKKA