In vitro effects of antibiofilm agents and antibiotics oncoagulase-negative staphylococci

In vitro effects of antibiofilm agents and antibiotics oncoagulase-negative staphylococci

Coagulase negative staphylococci (CoNS) are important nosocomial pathogens that cause biofilm infections. Biofilm provides advantages for microorganisms to resist antibiotics and host immune systems. Considering the increased antibiotic resistance, alternative treatments are needed to combat biofilm infections. In the present study, the effects of antibiotics including gentamicin (GEN), ciprofloxacin, doxycycline (DOX), rifampicin (RIF) and antibiofilm agents including N-acetylcysteine (NAC), ethylenediaminetetraaceticacid (EDTA), nisin (NIS), farnesol (FAR) on clinical CoNS biofilm and IS256, icaA gene expression levels were evaluated. Forty-five CoNS strains were isolated from patients’ catheters, at Manisa Celal Bayar University Hospital. The minimum inhibitory concentrations (MICs) of agents were detected by broth microdilution method with European Committee for Antimicrobial Susceptibility Testing (EUCAST) criteria. The combined effects of agents were investigated by checkerboard method. The antibiofilm effects of combinations were investigated by spectrophotometric microplate method. The effects of combinations on IS256 and icaA gene expressions were evaluated by real-time quantitative reverse-transcriptase PCR. Twenty-four isolates (53.3%) were detected as strong biofilm producer. Biofilm production was inhibited in seven isolates in the presence of EDTA+RIF and NIS+DOX while NIS+GEN combination and RIF inhibited biofilm in six isolates. Nine combinations were found to have synergistic effect against isolate #6 which are resistant to four different antibiotics. The expressions of icaA and IS256 were downregulated in the presence of EDTA, NAC+CIP, NAC+GEN, NIS+GEN, FAR+GEN. Antibiofilm agent/antimicrobial combinations could have promising effects for preventing catheter colonization. The further studies on antibiofilm treatment strategies would be beneficial for decreasing morbidity-mortality rates and healthcare costs caused by biofilms.

___

  • [1] Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014; 27(4): 870-926. [CrossRef]
  • [2] Fidan I, Yüksel S, Çetin Gürelik F. Koagülaz Negatif Stafilokok Suşlarında Biyofilm Oluşumu ve Siprofloksasinin Biyofilm Üzerine Etkisi. Turk Mikrobiyol Cem Derg. 2005; 35: 149-152. [CrossRef]
  • [3] Leite B, Gomes F, Teixeira P, Souza C, Pizzolitto E, Oliveira R. In vitro activity of daptomycin, linezolid and rifampicin on Staphylococcus epidermidis biofilms. Curr Microbiol. 2011; 63(3): 313-317. [CrossRef]
  • [4] Bendouah Z, Barbeau J, Hamad WA, Desrosiers M. Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg. 2006; 134(6): 991-996. [CrossRef]
  • [5] Gomes F, Leite B, Teixeira P, Azeredo J, Oliveira R. Farnesol in combination with N-acetylcysteine against Staphylococcus epidermidis planktonic and biofilm cells. Braz J Microbiol. 2012; 43(1): 235-242. [CrossRef]
  • [6] Høiby N, Ciofu O, Johansen HK, , Song ZJ, Moser C, Jensen PØ. Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011; 3(2): 55-65. [CrossRef]
  • [7] Mathur T, Singhal S, Khan S, Upadhyay D J, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol. 2006; 24(1): 25- 29.
  • [8] Płoneczka-Janeczko K, Lis P, Bierowiec K, Rypuła K, Chorbiński P. Identification of bap and icaA genes involved in biofilm formation in coagulase negative staphylococci isolated from feline conjunctiva. Vet Res Commun. 2014; 38(4): 337-346. [CrossRef]
  • [9] Kozitskaya S, Olson ME, Fey PD, Witte W, Ohlsen K, Ziebuhr W. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J Clin Microbiol. 2005; 43(9): 4751-4757. [CrossRef]
  • [10] Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K, Ziebuhr W. The Bacterial Insertion Sequence Element IS256 Occurs Preferentially in Nosocomial Staphylococcus epidermidis Isolates: Association with Biofilm Formation and Resistance to Aminoglycosides. Infect Immun. 2004; 72(2): 1210-1215. [CrossRef]
  • [11] Maki H, Murakami K. Formation of potent hybrid promoters of the mutant llm gene by IS256 transposition in methicillin-resistant Staphylococcus aureus. J Bacteriol. 1997; 179(22): 6944-6948. [CrossRef]
  • [12] Mertens A, Ghebremedhin B. Genetic determinants and biofilm formation of clinical Staphylococcus epidermidis isolates from blood cultures and indwelling devises. Eur J Microbiol Immunol. 2013; 3(2): 111-119. [CrossRef]
  • [13] Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: A need to act. J Intern Med. 2014; 276(2): 98-110. [CrossRef]
  • [14] Jones R. Global Epidemiology of Antimicrobial Resistance among Community-Acquired and Nosocomial Pathogens: A Five-Year Summary from the SENTRY Antimicrobial Surveillance Program (1997-2001). Semin Respir Crit Care Med. 2003; 24(1):121-34. [CrossRef]
  • [15] Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cırkovıc I, Ruzicka F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007; 115(8): 891-899. [CrossRef]
  • [16] Lorian V. Antibiotics in Laboratory Medicine. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.
  • [17] Lewis RE, Diekema DJ, Messer SA, Pfaller MA, Klepser ME. Comparison of Etest, chequerboard dilution and timekill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother. 2002; 49(2): 345-351. [CrossRef]
  • [18] Kırmusaoğlu S, Yurdugül S, Koçoğlu ME. The effect of N-acetylcysteine on growth and biofilm formation in Staphylococcus epidermidis strains. Turk J Med Sci. 2014; 42(4): 689-694. [CrossRef]
  • [19] Goswami M, Jawali N. N-acetylcysteine-mediated modulation of bacterial antibiotic susceptibility. Antimicrob Agents Chemother. 2010; 54(8): 3529-3530. [CrossRef]
  • [20] El-Feky MA, El-Rehewy MS, Hassan MA, Abolella HA, Abd El-Baky RM, Gad GF. Effect of ciprofloxacin and Nacetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces. Pol J Microbiol. 2009; 58(3): 261-267. [CrossRef]
  • [21] Varvaresou A, Papageorgiou S, Tsirivas E, Protopapa E , Kintziou H , Kefala V , Demetzos C. Self-preserving cosmetics. Int J Cosmet Sci. 2009; 31(3): 163-175. [CrossRef]
  • [22] Birteksoz Tan AS, Tuysuz M. The Use of Preservatives in Cosmetic Products and Their Efficiency Testing. ANKEM Derg. 2013; 27(2): 83-91. [CrossRef]
  • [23] Venkatesh M, Rong L, Raad I, Versalovic J. Novel synergistic antibiofilm combinations for salvage of infected catheters. J Med Microbiol. 2009; 58(7): 936-944. [CrossRef]
  • [24] Derengowski LS, De-Souza-Silva C, Braz S V., Mello-De-Sousa MT, Báo NS, Kyaw CM, Silva Pereira I. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Annals of Clinical Microbiology and Antimicrobials Ann Clin Microbiol Antimicrob.. 2009; 8:1-9. [CrossRef]
  • [25] Bower CK, McGuire J, Daeschel MA. Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Appl Environ Microbiol. 1995; 61(3): 992-997. [CrossRef]
  • [26] Pammi M, Liang R, Hicks JM, Barrish J, Versalovic J. Farnesol decreases biofilms of staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res. 2011; 70(6): 578-583. [CrossRef]
  • [27] Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother. 2006; 50(4): 1463-1469. [CrossRef]
  • [28] Gomes F, Teixeira P, Cerca N, Ceri H, Oliveira R. Virulence gene expression by staphylococcus epidermidis Biofilm cells exposed to antibiotics. Microb Drug Resist. 2011; 17(2): 191-196. [CrossRef]
  • [29] Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000; 44(12): 3357-3363. [CrossRef]
  • [30] Wang Q, Sun FJ, Liu Y, Xiong LR, Xie LL, Xia PY. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob Agents Chemother.. 2010; 54(6): 2707-2711. [CrossRef]
  • [31] Szczuka E, Jabłońska L, Kaznowski A. Effect of subinhibitory concentrations of tigecycline and ciprofloxacin on the expression of biofilm-associated genes and biofilm structure of Staphylococcus epidermidis. Microbiology. 2017; 163(5): 712-718. [CrossRef]
  • [32] Wang H, Tong H, Liu H, et al. Effectiveness of antimicrobial-coated central venous catheters for preventing catheterrelated blood-stream infections with the implementation of bundles: a systematic review and network meta-analysis. Ann Intensive Care. 2018; 8: 71 [CrossRef]
  • [33] Raad I, Mohamed JA, Reitzel RA, et al. Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother... 2012; 56(2): 935-941. [CrossRef]
  • [34] Anjum S, Singh S, Benedicte L, Roger P, Panigrahi M, Gupta B. Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. Glob Chall. 2018; 2(1): 1700068. [CrossRef]
  • [35] Saini H, Chhibber S, Harjai K. Antimicrobial and antifouling efficacy of urinary catheters impregnated with a combination of macrolide and fluoroquinolone antibiotics against Pseudomonas aeruginosa. Biofouling. 2016; 32(5): 795-806. [CrossRef]
  • [36] Singha P, Locklin J, Handa H, Author AB. A Review of the Recent Advances in Antimicrobial Coatings for Urinary Catheters Acta Biomater. 2017; 50: 20-40. [CrossRef]
  • {37] Zhou C, Wu Y, Thappeta KRV, et al. In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Appl. Mater. Interfaces. 2017; 9(41): 36269-36280. [CrossRef]
  • [38] Fisher LE, Hook AL, Ashraf W, et al. Biomaterial modification of urinary catheters with antimicrobials to give longterm broadspectrum antibiofilm activity. J Control Release. 2015; 202: 57-64. [CrossRef]
  • [39] Shah CB, Mittelman MW, Costerton JW, et al. Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother. 2002; 46(6): 1674-1679. [CrossRef]
  • [40] Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother. 2007; 51(1): 78-83. [CrossRef]
  • [41] Campos RP, Do Nascimento MM, Chula DC, Riella MC. Minocycline-EDTA lock solution prevents catheter- related bacteremia in hemodialysis. J Am Soc Nephrol. 2011; 22(10): 1939-1945. [CrossRef]
  • [42] Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977, 296: 1305-1309. [CrossRef]
  • [43] Constantinou, DG, G. Geesey, and M. H. Wilcox. Abstr. Annu. Meet. Am. Soc. Microbiol. 1981, abstr. L13, p.80. American Society for Microbiology, Washington, DC.
  • [44] Mermel LA, Farr BM, Sherertz RJ, Raad II, O'Grady N, Harris JS, Craven DE. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001; 32: 1249-1272. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

Phytochemical analysis, antioxidant and anticanceractivities of durian (Durio zibethinus Murr.) fruit extract

Vadivel SAMINATHAN, Ravi DORAISWAMY

Anti-nephrolithiatic efficacy of Teucrium polium aerialparts extract in a lithiasic rat model

Farah AL-MAMOORI, Talal ABURJAI

Development and characterization of camphor-loadedozonated olive oil nanoemulsions

Tahir Emre YALÇIN, Sevgi TAKKA

Screening the antimicrobial effect of ferrocene-boronicacid on Pseudomonas aeruginosa using proteomics andmetabolomics approach

Ceren ÖZKUL, Gülce TAŞKOR ÖNEL, Engin KOÇAK, Sedef KIR, Meral SAĞIROĞLU, Emirhan NEMUTLU

Evaluation anti-asthmatic activity of hydroalcoholic extractof Luffa cylindrica leaves

Suvarna INGALE, Prasad UPADHYE, Pramod INGALE

Molecular modeling and assessment of cytotoxic andapoptotic potentials of imatinib analogues featuring(thio)urea motifs in human leukemia and lymphoma cells

Özlem BİNGÖL ÖZAKPINAR, Aslı TÜRE, İlkay KÜÇÜKGÜZEL

The formulation of ginger oil nanoemulsions of threevarieties of ginger (Zingiber officinale Rosc.) as naturalantioxidant

Indah Yulia NINGSIH, Mochammad Amrun HIDAYAT, Husniya FARADISA, Mei Dwi CAHYANI, Viddy Agustian ROSYIDI

Isolation and characterization of chemical constituentsfrom the mushroom Clitocybe nebularis

Judit HOHMANN, Andrea LÁZÁR, Morteza YAZDANI, Attila VÁNYOLÓS, Zoltán BÉNI, Miklós DÉKÁNY, Viktor PAPP, Katalin BURIÁN

Myrtus communis extract ameliorates high-fat diet inducedbrain damage and cognitive function

Dilek ÖZBEYLİ, Büşra ERTAŞ, Göksel ŞENER, Selin ŞAKARCAN, Gizem YARIMBAŞ, Ali ŞEN

Synthesis, characterization, antituberculosis activityand computational studies on novel Schiff bases of 1,3,4- thiadiazole derivatives

Emine Elçin ORUÇ EMRE, Sevgi KARAKUŞ, Arooma MARYAM, Sevda TÜRK