A review on molecular neuropathology of Alzheimer’s disease in association with aging

A review on molecular neuropathology of Alzheimer’s disease in association with aging

Alzheimer’s disease (AD) is a chronic neurodegenerative disease where learning and memory deficit occur. Aging is the main culprit responsible for this disease. Many hypotheses have been proposed for explaining the neuropathology of AD. Amyloid cascade hypothesis states that AD may cause due to neuronal damage by forming senile plaque of beta amyloid (Aβ) and followed by the formation of neurofibrillary tangles (NFTs). Due to mismetabolism of amyloid precursor protein (APP), Aβ aggregates and initiates AD. Mitochondrial cascade hypothesis emphasize on mitochondrial dysfunction in aged brain which starts by rising Aβ accumulation, later tau hyperphosphorylation and inflammation, and finally development of AD. According to the calcium hypothesis, dysregulation of neuronal Ca²+ signaling incurs apoptosis of neuronal cells that interrupts cognitive functions and initiates AD. Tau hypothesis propose that aggregation of tau protein may lead the formation of NFTs which is a pathological hallmark of AD. Oxidative stress hypothesis states that brain aging increase the production of lipid peroxides and reactive oxygen species by elevating oxidative stress level which causes AD. In aged brain, accumulation of oxysterol due to impairment of Blood Brain Barrier (BBB) may lead to formation of AD which is purported in cholesterol hypothesis. Again, neuroinflammation hypothesis says that immune system’s cell injury occurs in AD which plays a dominating role in AD inflammation. However, the mechanism of neuropathology of AD remains poorly understood still now. This review critically evaluates different hypotheses which may become helpful for the future researchers to scrutinize more acceptable molecular neuropathology of AD.

___

  • Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010; 362(4): 329–344. [CrossRef]
  • Wang Y, Shi Y, Wei H. Calcium dysregulation in Alzheimer’s disease: A target for new drug development. J Alzheimers Dis Parkinsonism. 2017; 7(5): 374. [CrossRef]
  • Bu G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009; 10: 333–344. [CrossRef]
  • Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB. Brain atrophy in Alzheimer's disease and aging. Ageing Res Rev. 2016; 30: 25-48. [CrossRef]
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002; 297: 353–356. [CrossRef]
  • Price JL, McKeel DW Jr, Buckles VD, Roe CM, Xiong C, Grundman M, Hansen LA, Petersen RC, Parisi JE, Dickson DW, Smith CD, Davis DG, Schmitt FA, Markesbery WR, Kaye J, Kurlan R, Hulette C, Kurland BF, Higdon R, Kukull W, Morris JC. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 2009; 30: 1026–1036. [CrossRef]
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991; 12(10): 383-388. [CrossRef]
  • Teng FY, Tang BL. Widespread gamma-secretase activity in the cell, but do we need it at the mitochondria? Biochem Biophys Res Commun. 2005; 328: 1–5. [CrossRef]
  • Goodman Y, Mattson MP. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol. 1994; 128(1): 1-12. [CrossRef]
  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H. J. W. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science. 2004; 304(5669): 448–452. [CrossRef]
  • Caricasole A, Copani A, Caruso A, Caraci F, Iacovelli L, Sortino MA, Terstappen GC, Nicoletti F. The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer's disease? Trends Pharmacol Sci. 2003; 24(5): 233-238. [CrossRef]
  • Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002; 22(10): 221. [CrossRef]
  • Kim JW, Lee JE, Kim MJ, Cho EG, Cho SG, Choi EJ. Glycogen synthase kinase 3 beta is a natural activator of mitogenactivated protein kinase/extracellular signal-regulated kinase kinasekinase 1 (MEKK1). J Biol Chem. 2003; 278(16): 13995-14001. [CrossRef]
  • Bamberger ME, Landreth GE. Microglial interaction with beta-amyloid: implications for the pathogenesis of Alzheimer's disease. Microsc Res Tech. 2001; 54(2): 59-70. [CrossRef]
  • Cataldo AM, Petanceska S, Terio NB, Peterhoff CM, Durham R, Mercken M, Mehta PD, Buxbaum J, Haroutunian V, Nixon RA. Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome Neurobiol Aging. 2004; 25(10): 1263-1272. [CrossRef]
  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol. 1999; 46(6): 860-866. [CrossRef]
  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR. Intraneuronal A β42 accumulation in human brain. Am J Pathol. 2000; 156(1): 15-20. [CrossRef]
  • Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry. 2004; 9(7): 664-683. [CrossRef]
  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002; 416(6880): 535-639. [CrossRef]
  • Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer's disease. Proc Natl Acad Sci U S A. 2004; 101(17): 66236628. [CrossRef]
  • Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D. Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci. 2003; 23(12): 5219-5226. [CrossRef]
  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci. 2001; 21(8): 2561-2570. [CrossRef]
  • Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron. 2000; 28(2): 449-459. [CrossRef]
  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002; 156(6): 1051-1063. [CrossRef]
  • Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005; 307(5713): 1282-1288. [CrossRef]
  • Glenner GG, Wong CW. Alzheimers-Disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984; 122(3): 1131–1135. [CrossRef]
  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L. Segregation of a missense mutation in the amyloid precursor protein gene with familial AD. Nature. 1991; 349(6311): 704–706. [CrossRef]
  • Herrup k. The case for rejecting the amyloid cascade hypothesis. Nature. 2015; 18(6): 794–799. [CrossRef]
  • Swerdlow RH, Burns JM, Khanb SM. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: Progress and Perspectives. Biochim Biophys Acta. 2014; 1842(8): 1219–1231. [CrossRef]
  • Cheng Y, Bai F. The association of tau with mitochondrial dysfunction in Alzheimer’s disease. Front Neurosci. 2018; 12: 163. [CrossRef]
  • Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease. Antioxid Redox Signal. 2012; 16: 1434–1455. [CrossRef]
  • Coskun PE, Beal MF, Wallace DC. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA. 2004; 101: 10726–10731. [CrossRef]
  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, McKee AC, Beal MF, Graham BH, Wallace DC. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics. 1994; 23: 471–476. [CrossRef]
  • Hamblet NS, Castora FJ. Elevated levels of the Kearns-Sayre syndrome mitochondrial DNA deletion in temporal cortex of Alzheimer's patients. Mutat Res. 1997; 379: 253–262. [CrossRef]
  • Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006; 38: 515–517. [CrossRef]
  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006; 38: 518–520. [CrossRef]
  • Corrada MM, Brookmeyer R, Berlau D, Paganini-Hill A, Kawas CH. Prevalence of dementia after age 90: results from the 90+ study. Neurology. 2008; 71: 337–343. [CrossRef]
  • Berridge MJ. Calcium hypothesis of Alzheimer's disease. Pflügers Arch. 2010; 459(3): 441-449. [CrossRef] [39] Bezprozvanny I. Calcium Signaling and Neurodegeneration. Acta Naturae. 2010; 2(1): 72-82.
  • Berridge MJ. Neuronal calcium signaling. Neuron. 1998; 21: 13–26. [CrossRef] [41] Landfield PW. ‘Increased calcium-current’ hypothesis of brain aging. Neurobiol Aging. 1987; 8: 346-347. [CrossRef]
  • Disterhoft JF, Thompson LT, Weiss C, Moyer JM Jr, Zee EVD, Carrillo M, Kronfrost-Collins M, Power J. The Caicium hypothesis for AD: Insights from human and animal studies. Neurosci Res Commun. 1995; 17(2):121-131.
  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999; 286: 735-741. [CrossRef]
  • Brzyska M and Elbaum D. Dysregulation of calcium in Alzheimers disease. Acta Neurobiol. 2003; 63: 171-183.
  • Alzheimer’s research-intracellular calcium store malfunction leads to brain hyperactivity. Medical press.https://medicalxpress.com/news/2018-02-alzheimer-researchintracellular-calcium-malfunction-brain.html (accessed February 9, 2018)
  • Thomas E Cope. How Alzheimer’s disease spreads throughout the brain-new study. http://theconversation.com/how-alzheimers-disease-spreads-throughout-the-brain-new-study-89692 (accessed January 5, 2018)
  • Xie C and Miyasaka T. The Role of the Carboxyl-Terminal Sequence of Tau and MAP2 in the Pathogenesis of Dementia. Front Mol Neurosci. 2016; 9: 158. [CrossRef]
  • Ballatore C, Lee V-Y, Trojanowski J. Tau mediated neurodegeneration in Alzheimers disease and related disorders. Nat Rev Neurosci. 2007; 8: 663-672. [CrossRef]
  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof P. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000; 33: 95-130. [CrossRef]
  • Mudher M, Lovestone S. Alzheimer's disease- do tauists and Baptists finally shake hands? Trends Neurosci. 2002; 25:22–26. [CrossRef]
  • Maccioni RB, Farı´as G, Morales I, Navarrete L. The Revitalized Tau Hypothesis on AD. Arch Med Res. 2010; 41; 226231. [CrossRef]
  • Delacourte A. The natural and molecular history of AD. J Alzheimers Dis. 2006; 9: 187-194. [CrossRef]
  • Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA. 2002; 99, 6364–6369. [CrossRef]
  • Koopman WJ, Nijtmans LG, Dieteren CE, Roestenberg P, Valsecchi F, Smeitink JA, Willems PH. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal. 2010; 12(12): 1431–1470. [CrossRef]
  • Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R. The Oxidative Stress Hypothesis In Alzheimers Disease. Psychiatria Danubina. 2013; 25(4): 401-409.
  • Wojsiat J, Zoltowska KM, Kaszub KL, Wojda U. Oxidant/Antioxidant imbalance in Alzheimer’s disease: therapeutic and diagnostic prospects. Oxid Med Cell Longev. 2018; 1-16. [CrossRef]
  • Doorn JA and Petersen DR. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal. Chem Biol Interact. 2003; 143-144: 93–100. [CrossRef]
  • Resende R, Moreira P, Proença T, Deshpande A, Busciglio J, Pereira C, Oliveira CR. Brain oxidative stress in a tripletransgenic mouse model of Alzheimer disease. Free Radic Biol Med. 2008; 44(12): 2051–2057. [CrossRef]
  • Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochem Int. 2013; 62: 540-555. [CrossRef]
  • Huang W, Zhang X, Chen W. Role of oxidative stress in Alzheimer's disease. Biomed Rep. 2016; 4(5): 519–522. [CrossRef]
  • Craddock TJ, Tuszynski JA, Chopra D, Casey N, Goldstein LE, Hameroff SR, Tanzi RE. The zinc dyshomeostasis hypothesis of Alzheimer's disease. PLoS One. 2012; 7: 33552. [CrossRef]
  • Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease. J Neurochem. 2002; 82: 1137-1147. [CrossRef]
  • Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010; 345: 91-104. [CrossRef]
  • Fleming JL, Phiel CJ, Toland AE. The role for oxidative stress in aberrant DNA methylation in Alzheimer's disease.Curr Alzheimer Res. 2012; 9: 1077-1096. [CrossRef]
  • Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS. ABAD enhances Aβinduced cell stress via mitochondrial dysfunction. The FASEB Journal. 2005; 19(6):597–598. [CrossRef]
  • Orth M and Bellosta S. Cholesterol: Its Regulation and Role in Central Nervous System Disorders. Cholesterol. 2012; 2012: 292598. [CrossRef]
  • Testa G, Staurenghi E, Zerbinati C, Gargiulo S, Iuliano L, Giaccone G, Fantò F, Poli G, Leonarduzzi G, Gamba P. Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation. Redox Biol. 2016; 10: 24-33. [CrossRef]
  • Xue-Shan Z, Juan P, Qi W, Zhong R, Li-Hong P, Zhi-Han T, Zhi-Sheng J, Gui-Xue W, Lu-Shan L. Imbalanced cholesterol metabolism in AD. Clin Chim Acta. 2016; 456:107–114. [CrossRef]
  • Hascalovici JR, Vaya J, Khatib S, Holcroft CA, Zukor H, Song W, Arvanitakis Z, Bennett DA, Schipper HM. Brain sterol dysregulation in sporadic AD and MCI: relationship to heme oxygenase-1. J Neurochem. 2009; 110:1241–1253. [CrossRef]
  • Lütjohann D, Meichsner S, Pettersson H. Lipids in AD and their potential for therapy. J Clin Lipidol. 2012; 7(1):65– 78. [CrossRef]
  • Habchi J, Chia S, Galvagnion C, Michaels TCT, Bellaiche MMJ, Ruggeri FS, Sanguanini M, Idini I, Kumita JR, Sparr E, Linse S, Dobson CM, Knowles TPJ, Vendruscolo M. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat Chem. 2018; 10: 673-683. [CrossRef]
  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in AD. Lancet Neurol. 2015; 14(4): 388–405. [CrossRef]
  • Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D. Inflammation in AD: relevance to pathogenesis and therapy. Alzheimers Res Ther. 2010; 2(1): 1. [CrossRef]
  • Ho GJ, Drego R, Hakimian E, Masliah E. Mechanisms of cell signaling and inflammation in AD. Curr Drug Targets Inflamm Allergy. 2005; 4(2): 247–56. [CrossRef]
  • Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol. 2009; 4(4): 462–475. [CrossRef]
  • Mietelska-Porowska A and Wojda U. T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer’s Disease: Potential Tools of New Biomarkers. J Immunol Res. 2017; 4626540: 1-17. [CrossRef]
  • Rosenberg GA. Neurological diseases in relation to the blood brain barrier. J Cereb Blood Flow Metab. 2012; 32(7): 1139-1151. [CrossRef]
  • Fisher Y, Strominger I, Biton S, Namirovsky A, Baron R, Monsonego A. Th1 polarization of T cells rejected into the cerebrospinal fluid induces brain immune-surveillance. J Immunol. 2014; 192(1): 92-102. [CrossRef]
  • McManus RM, Higgins SC, Mills KHG, MA Lynch. Respiratory infection promotes T cell infiltration and amyloid β deposition in APP/PS1 mice. Neurobiol Aging. 2014; 35(1): 109-121. [CrossRef]
  • Swerdlow RH. Is aging part of Alzheimer's disease, or is Alzheimer's disease part of aging. Neurobiol Aging. 2007; 28: 1465–1480. [CrossRef]
  • Hendrie HC. Epidemiology of dementia and Alzheimer's disease. Am J Geriatr Psychiatry. 1998; 6: 3–18. [CrossRef]
  • Hayflick L. Biological aging is no longer an unsolved problem. Ann NY Acad Sci. 2007; 1100: 1–13. [CrossRef]
  • Hedden T, Gabrieli JD. Insights into the aging mind: A view from cognitive neuroscience. Nat Rev Neurosci. 2004; 5:87-96. [CrossRef]
  • Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell. 2007; 6(3): 307-317. [CrossRef]
  • Kritchevsky SB, Muldoon MF. Oxidative stress and aging: still a hypothesis. J Am Geriatr Soc. 1996; 44: 873-875. [CrossRef]
  • Wang Y, Yan T, Lu H, Yin W, Lin B, Fan W, Zhang X, Fernandez-Funez P. Lessons from Anti-Amyloid-β Immunotherapies in Alzheimer Disease: Aiming at a Moving Target. Neurodegener Dis. 2017; 17(6): 242-250. [CrossRef]
Journal of research in pharmacy (online)-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Marmara Üniversitesi
Sayıdaki Diğer Makaleler

In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical studies on Juniperus drupacea

Alper GÖKBU, Didem DELİORMAN, Nilüfer ORHA

Antimicrobial activities of five endemic Hypericum species from Anatolia compared with Hypericum perforatum

Esra EROĞLU ÖZKAN, Berna ÖZBEK ÇELİK, Afife MAT

In vitro antioxidant capacities and phenolic contents of four Erica L. (Ericaceae) taxa native to Turkey

Muhammed Mesud, Ayşegül KÖRO, Gülsen KENDİR, Nurgül KÜÇÜKBOYACI

Morphological characteristics of Clinopodium acinos and Clinopodium suaveolens (Lamiaceae) growing in Turkey

Ayla KAYA

Poly(3-methylthiophene) modified gold sensor for determination of 3,4-dihydroxyphenylacetic acid, ascorbic acid and uric acid in biological fluids using voltammetric techniques

Ebru KUYUMCU SAVAN, Gamze ERDOĞDU

Stability studies of compression coated ornidazole tablets for colon specific drug delivery

Mine ÖZYAZICI, Zeynep ŞENYİĞİT, Seda RENÇBER

Reduction of salivary tumor necrosis factor alpha levels in response to magic mouthwash with Curcuma xanthorriza in cancer patients undergoing chemotherapy

Taofik RUSDIANA, Irna Suf, Indra GUNAWAN, Indra WIJAYA, Anas SUBARNAS

Design, synthesis and in vitro evaluation of new thiosemicarbazone derivatives as potential anticancer agents

Mehlika Dilek ALTINTOP, Ahmet ÖZDEMİR, Belgin Sever, Gülşen AKALIN Çİ

Antioxidant, anti-inflammatory and wound healing properties of ethanolic extracts of Thevetia peruviana (Pers.) K. Schum

Haseebur, Nazneen, Mir HARIS, Riaz MAHM

Uninfected agarwood branch extract possess cytotoxic and inhibitory effects on MCF-7 breast cancer cells

Yumi Zuha, Phirdaous ABBAS, Hamzah MOHD