Effect of Bioceramic Coating Materials on Surface Hardness, Morphology and Coating Thickness

Effect of Bioceramic Coating Materials on Surface Hardness, Morphology and Coating Thickness

Stainless steel Rex-734 biomedical alloy (ASTM F1586) can be used as a new functional implant material with its extra ordinary corrosion resistance and material properties. In order to functionalize such material, Single Hydroxyapatite(HA) (S1),  Hydroxyapatite-SiO2 (S2), Hydroxyapatite-Ag (S3) and Hydroxyapatite/Zr (S4) dip coatings were executed on Rex-734 implant alloy. Different coating thicknesses for S1, S2, S3 and S4 groups were obtained 12.4, 10.9, 11.1 and 10.3 µm, respectively. From the morphologic SEM views, the better and crack free coating surfaces were found for HA/Zr (S4) group. The average hardness values for single HA coatings were found to be 290 HV.  In comparison with single coatings, HA/SiO2 coatings caused lower hardness (261 HV) and higher values (312 HV) for HA/Ag double coatings, however, highest hardness was obtained (353 HV) for HA/Zr coatings. 

___

  • References
  • 1 M., Sumita, T., Hanawa, S.H., Teoh, Materials Science and Engineering: C, 2004, 24(6-8), 753-60.
  • 2 E.J., Giordani, V.A., Guimaraes, T.B., Pinto, I., Ferreira, International Journal of fatigue, 2004, 26(10), 1129-36.
  • 3 V., Singh, K., Marchev, C.V., Cooper, E.I., Meletis, Surface and Coating Technology, 2002, 160(2-3), 249-58.
  • 4 C.J., Kirkpatrick, M., Wagner, H., Koehler, F., Bittenger, M. L., Otto, C. L., Klein, Journal of materials science: Materials in medicine, 1997, 8(3), 131-141.
  • 5 British Stainless Steel Association. http://www.bssa.org.uk/topics.php?article= 138. 20 June 2013.
  • 6 C., Liu, Q., Bi, A., Matthews, Corrosion Science, 2001, 43(10), 1953-61.
  • 7 G. A., Battison, R., Gerbasi, M., Porchia, Thin Solid Films, 1994, 239(2), 186-91.
  • 8 M., Fallet, H., Mahdjoub, B., Gautier, J.P., Bauer, Journal of non-crystalline solids, 2001, 293, 527-33.
  • 9 X., Pang, I., Zhitomirsky, M., Niewczas, Surface and Coatings Technology, 2005, 195(2-3), 138-46.
  • 10 B., Aksakal, Y., Say, Ç., Buyukpinar, S., Bakirdere, Ceramics International, 2017, 43(15), 12609-15.
  • 11 Y., Say, B., Aksakal, Journal of Materials Science: Materials in Medicine, 2016, 27(6), 105.
  • 12 W.G., Billotte, The Biomadical Engineering Handbook, 2000, Vol.1, 31-38.
  • 13 P., Ducheyne, S., Radin, M., Heughebaert, J. C., Heughebaret, Biomaterials, 1990, 11(4), 244-54.
  • 14 T. P., Hoepfner, E. D., Case, Ceramic Transactions, 1999, 110, 53-54.
  • 15 M., Guglielmi, Journal of sol-gel science and technology, 1997, 8(1-3), 443-49.
  • 16 K., Izumi, M., Murakami, T., Deguchi, A., Morita, N., Tohge, T., Minami, Journal of the American Ceramic Society, 1989, 72(8), 1465-68.
  • 17 Dislich, H., Coatings on glass, in Glass Science and Technology 2, 1984, 52-282.
  • 18 M., Mennig, H., Schmidt, Wet coating technology for glass, Short Course, INM, Institut für Neue Materialien, Saarbrücken, Germany, 2000, 11.
  • 19 F., Chen, Z. C, Wang, C. J., Lin, Materials letters, 2002, 57(4), 858-61.
  • 20 L., Xiangmei, M., Yanan, W., Shuilin, H.C., Man, Applied surface science, 2013, 273, 748-57.
  • 21 G. A., Fielding, M., Roy, A., Bandyopadhyay, S., Bose, Acta biomaterialia, 2012, 8(8), 3144-52.
  • 22 Y., Say, B., Aksakal, B., Dikici, Ceramics International, 2016, 42(8), 10151-58.
  • 23 Y. W., Gu, K. A., Khora, P., Cheangb, Biomaterials, 2003, 24(9), 1603-11.
  • 24 S. J., Kalita, H. A., Bhatt, Materials Science and Engineering: C, 2007, 27(4), 837-48.
  • 25 R., Palanivelu, S., Kalainathan, A. R., Kumar, Ceramics International, 2014, 40(6), 7745-51.
  • 26 S., Kannan, A., Balamurugan, S., Rajeswari, Electrochimica acta, 2004, 49(15), 2395-403.
  • 27 R., Murugan, S., Ramakrishna, Composites Science and Technology, 2005, 65(15-16), 2385-406.
  • 28 K. A., Gross, V., Gross, C. C., Berndt, Journal of the American Ceramic Society, 1998, 81(1), 106-12.