Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method

Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method

Nano electroceramic samples of Bismuth Ferrite/Graphene Oxide were prepared by the hydrothermal process. The crystalline structure, morphological properties, electrical and optical properties of samples were investigated. X-ray results confirm that all the BFO nanopowders are polycrystalline with a cubic structure. The crystallite sizes and lattice parameters values of the samples were calculated. SEM and TEM results indicate that the Bismuth ferrite/Graphene oxide powders have nanostructure. The average grain size values of the powders were found to be 351, 337, 411 and 371nm for BF0, BFO20, BFO50 and BFO100 samples, respectively. The effects of the Graphene oxide doped on the Bismuth ferrite are resulted in a change of grain size. The optical band gaps of the nano electroceramics were calculated for the various amount of Graphene oxide. The optical constants of the Bismuth Ferrite were changed with Graphene oxide doping. The room temperature dielectric measurement with frequency reveals the dielectric constant and loss are affected with increasing frequency for BFO nanoceramics. The alternating current conductivity of the as-synthesized nano electroceramics increases with the increasing frequency. The obtained results suggest that the structural, optical and electrical properties of BFO can be controlled and changed by Graphene Oxide doping. 

___

  • [1] Sakar M., Balakumar S., Saravanan P., Jaisankar S.N., Mater Res Bull, 48 (2013), 2878-2885.
  • [2] Mukherjee S., Mitra M. K., J Aust Ceram Soc, 50 [2] (2014), 180-187.
  • [3] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., J Am Ceram Soc, 90 [11] (2007), 3673-3675.
  • [4] Yang X., Zhang Y., Xu G., Wei X., Ren Z., Shen G., Han G., Mater Res Bull, 48 (2013), 1694-1699.
  • [5] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006),135-139.
  • [6] Gao T., . Chen Z, Huang Q., Niu F., Huang X., Qin L., . Huang Y, Rev Adv Mater Sci, 40 (2015), 97-109.
  • [7] Zhang H., Kajiyoshi K., J Am Ceram Soc, 93 [11] (2010), 3842-3849.
  • [8] Chen X-Z., Qiu Z-C., Zhou J-P., Zhu G., Bian X-B, Liu P., Mater Chem Phys, 126 (2011), 560-567.
  • [9] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006), 135-139.
  • [10] Aguiara E.C., Ramirez M.A., Moura F., Varelaa J.A., Longoa E., Simoes A.Z., Ceram Int, 39 (2013),13-20.
  • [11] Srivastav S. K., Gajbhiye N. S., J Am Ceram Soc, 95 [11] (2012), 3678-3682.
  • [12] Ghosh S., Dasgupta S., Sen A., Maiti H. S., Mater Res Bull, 40 (2005), 2073-2079.
  • [13] Biasotto G., Simo A.Z., Foschini C.R., Zaghete M.A., Varela J.A., Longo E., Mater Res Bull , 46 (2011), 2543-2547.
  • [14] Achenbach G.D., James W.J., Gerson R., J Am Ceram Soc, 8 (1967), 437-438.
  • [15] Sakar M., Balakumar S., Saravanan P., Jaisankar S.N., Mater Res Bull, 48 (2013), 2878-2885.
  • [16] Xu J-H., Ke H., Jia D-C., Wang W., Zhou Y., J Alloy Compd, 472 (2009), 473-477.
  • [17] Shetty S., Palkar V.R., Pinto R., Pramana, J Phys, 58 (2002), 1027-1030.
  • [18] Ghosh S., Dasgupta S., Sen A., Maiti H.S., J Am Ceram Soc, 88(5) (2005), 1349-1352.
  • [19] Ghosh S., Dasgupta S., Sen A., Maiti H.S., Mater Res Bull, 40 (2005), 2073-2079.
  • [20] Ghosh S., Dasgupta S., Sen A., Maiti H. S., P Mater Res Bull, 40 [12] (2005), 2073–9.
  • [21] Das N., Majumdar R., Sen A., Maiti H.S., Mater Lett, 61 (10) (2007), 2100-2104.
  • [22] Chen C., Cheng J., Yu S., Che L.J., Meng Z.Y., J Cryst Growth, 291 (2006), 135-139.
  • [23] Han J.T., Huang Y.H., Wu X.J., Wu C.L., Wei W., Peng B., Huang W., Goodenough J.B., Adv Mater, 18 (2006), 2145-2148.
  • [24] Xiaomeng L., Jimin X., Yuanzhi S., Jiamin L., J Mater Sci, 42 (2007), 6824-6827.
  • [25] Wang Y., Xu G., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., J Am Ceram Soc, 90 (2007), 2615-2617.
  • [26] C Cho.M., Noh J.H., Cho İ.-S., An J.-S., Hong K.S., Kim J.Y., J Am Ceram Soc, 91 (2008), 3753-3755.
  • [27] Kim J.K., Kim S.S., Kim W.J., Mater Lett, 59 (2005), 4006-4009.
  • [28] Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S., Nano Lett, 7 (2007), 766-772.
  • [29] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., Ceram Int, 35 (2009), 1285-1287.
  • [30] Han S. H., Kim K. S., Kim H. G., Lee H.-G., Kang H.-W., Kim J. S., Cheon C. I., Ceram Int, 36 (2010), 1365-1372.
  • [31] Fruth V., Mitoserıu L., Berger D., Ianculescu A., Matei C., Preda S., Zaharescu M., Prog Solid State Ch, 35 (2007), 193-202.
  • [32] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006), 135-139.
  • [33] Aydin C., El-Nasser H.M., Yakuphanoglu F., Yahia I.S., Aksoy M., J Alloy Compd, 509 (2011), 854-858.
  • [34] Aydin C., Al-Hartomy Omar A., Al-Ghamdi A. A., Al-Hazmi F., Yahia I. S., El-Tantawy F., Yakuphanoglu F., J Electroceram, 29(2012), 155-162.
  • [35] Slamovich E.B., Aksay I.A., J Am Ceram Soc, 79 (1996), 239.
  • [36] Li S., Condrate Sr R.A., Jang S.D., Spriggs R.M., J Mater Sci, 24 (1989), 3873.
  • [37] Kaygili O., Keser S., Ates T., Kirbag S., Yakuphanoglu F., Mater Sci, 22 (2016), 1392-1320.
  • [38] Aydin C., Abd El-Sadek M.S., Zheng K., Yahia I.S., Yakuphanoglu F., Opt Laser Technol, 48 (2013), 447-452.
  • [39] Aydin C., Benhaliliba M., Al-Ghamdi A. A., Gafer Z. H., El-Tantawy F., Yakuphanoglu F., J Electroceram, 31 (2013), 265-270.
  • [40] Guler O., Guler S. H., Yakuphanoglu F., Aydin H., Aydin C., El-Tantawy F., Duraia El-Shazly M., Fouda A. N., Fuller Nanotub Car N, 23 (2014), 865-869.
  • [41] Aydin C., Khusayfan N. M., Al-Ghamdi Ahmed A., El-Tantawy F., Farooq W. A., Yakuphanoglu F., J Sol-Gel Sci Technol, 78 (2016), 68.
  • [42] Aydin C., Al-Hartomy Omar A., Al-Ghamdi A. A., Al-Hazmi F., Yahia I. S., El-Tantawy F., Yakuphanoglu F., J Electroceram, 29 (2012), 155-162.
  • [43] Aydin H., Mansour Sh. A. , Aydin C., A. Al-Ghamdi A., Al-Hartomy O.A., El-Tantawy F., Yakuphanoglu F., J Sol-Gel Sci Technol 64 (2012), 728-733.
  • [44] Aydin C., Mansour Sh. A., Alahmed Z. A., Yakuphanoglu F., J Sol-Gel Sci Technol, 62 (2012), 397-403.
  • [45] Aydin H., Tataroglu A., Al-Ghamdi A. A., Yakuphanoglu F., El-Tantawy F., Farooq W.A., J Alloy Compd, 625 (2015), 18-25.
  • [46] Aydin H., El-Nasser H.M., Aydin C., Al-Ghamdi A. A., Yakuphanoglu F., Appl Surf Sci, 350 (2015), 109-114.