GENEL BİR FIRKATEYNİN REFERANS ENERJİ SİSTEMİNİN GELİŞTİRİLMESİ

IMO’nun 3. sera gazı emisyonu çalışmasına göre deniz taşımacılığı yılda yaklaşık 940 milyon ton CO2 gazı salmakta ve bu da küresel sera gazı salımının (emisyon) yaklaşık %2.5’u kadardır. Ciddi önemler alınmadığı takdirde bu rakamların önemli ölçüde artacağı tahmin edilmektedir. IMO’nun yaptığı çalışmalarda, 2008 yılına kıyasla 2050 yılında deniz taşımacılığı kaynaklı sera gazı salımlarının %50 azalması hedeflenmektedir. Günümüzde donanma gemileri ticari gemiler gibi IMO’nun kısıtlamalarından sorumlu tutulmasa da gelecekte bu gemilere özel kısıtlamalar getirilebileceği değerlendirilebilir. Bu çerçevede donanma gemilerine yönelik enerji analizinin yapılması faydalı olacaktır. Bu çalışmada genel bir fırkateyn için gemi enerji analizinin gerçekleştirilmesinde ilk basamak olan Referans Enerji Sistemi çalışması yapılmıştır. Çalışmanın amacı askeri deniz platformlarının enerji analizi için bir pencere açılmasını sağlamaktır.

DEVELOPING THE REFERENCE ENERGY SYSTEM OF A GENERIC FRIGATE

Referring 3rd IMO GHG study maritime transport is responsible for about 2.5% of global greenhouse gas (GHG) emissions emitting around 940 million tons of CO2 annually. This emission figure is projected to increase significantly if serious mitigation measures are not put in place. Thanks to the studies conducted by IMO GHG emissions from international shipping to be reduced, actually the projection of the reduction amount is 50% achieved by 2050 compared to 2008. Today, navy vessels are not responsible for the IMO emission regulations as commercial vessels, but special regulations may appear in the future. Therefore energy analysis can be needed also for the naval vessels in the future. In this paper, the initial step for performing a ship energy system analysis, which is called “Reference Energy System”, has been developed for a generic frigate. The aim of this work is to provide to open a window for energy analysis of naval platforms.

___

  • Baldi F. (2016). “Modelling, analysis and optimization of ship energy systems,” Doctoral dissertation, Dept. of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden.
  • Sulukan E., Özkan D., Sarı A., “Reference Energy System Analysis of a Generic Ship”, Journal of Clean Energy Technologies, Vol. 6, No. 5, 2018.
  • Eyring V., Köhler H.W., Lauer A., Lemper B., Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050, J. Geophys. Res. 110 (2005) D17306.
  • Corbett J.J., Köhler H.W. (2003). Updated emissions from ocean shipping, J. Geophys. Res.108 (D20) 1–13.
  • IMO, Third IMO GHG Study, Executive Summary and Final Report, 2014.
  • Shell Report. (2019). https://www.shell.com/business-customers/marine/ imo-2020.html.
  • DNV GL (2018). “Understanding IMO 2020”, Macquarie Research.
  • Buhaug et al. (2009). Second IMO GHG Study 2009 Update of the 2000 GHG Study: Final Report Covering Phrases 1 and Phrases 2, IMO, London.
  • Cames et al. (2015). Emission reduction targets for international aviation and shipping. [Online]. Available: http://www.europarl.europa.eu/ RegData/etudes/STUD/2015/569964/IPOL_STU(2015)569964_EN.pdf
  • Heaps, C.G. (2016). Long-range Energy Alternatives Planning (LEAP) system. [Software version: 2018.1.20] Stockholm Environment Institute. Somerville, MA, USA. https://www.energycommunity.org
  • Kydes, A.S., Kanudia A., Loulou R. (2004). “National Energy Modeling Systems”, Encyclopedia of Energy, Volume 4, 89-109.