Acute Diarrhea in Children Less than Five Years of Age: Epidemiology of Bacterial Pathogens

Objectives: Acute diarrhea is among the leading causes of mortality and morbidity worldwide. Bacteria tend to cause more fatal illnesses and complications such as septicemia and persistent diarrhea. This study aimed to determine the causes of acute diarrhea, laboratory and clinical predictors of bacterial causes, and antimicrobial resistance pattern among the isolates among children in Dar es salaam, Tanzania. Methods: A cross-sectional hospital-based study was conducted in Dar es salaam Hospitals from April 2015 to March 2016 among children below five years of age who presented with acute diarrhea. Demographic characteristics and results from stool specimen analysis, complete blood count, C- reactive protein and antimicrobial resistance results were recorded using a pre-structured clinical research form. Results: Among 200 children enrolled, viruses were identified in 149 (74.5%) of the cases. Bacterial pathogens were found in 15 (7.5%) cases only. Elevated stool red blood cell count, stool white blood cell count, and fever were highly associated with enteric bacterial pathogens (p<0.001, p=0.002 and p=0.04 respectively). Most of the bacterial isolates were resistant to Cotrimoxazole and erythromycin but highly sensitive to ciprofloxacin and Ceftriaxone. Conclusion: Fever, elevated stool leukocyte and elevated stool red blood cells are significant predictors of bacterial enteric pathogens in children with acute diarrhea. These parameters may guide clinicians in resource-limited settings in the diagnosis and management of acute diarrhea. Further studies should be conducted to determine local antimicrobial resistance patterns. J Microbiol Infect Dis 2020; 10(3): 208-214.

___

  • 1- WHO: World Health Organization. Principes directeurs à l’intention des programmes antituberculeux pour la prise en charge des tuberculoses pharmacorésistantes. Genève, Suisse, 2008; WHO/HTM/TB/2008, p:402. 276.
  • 2- Edem VF, Ige O, Arinola OG. Plasma vitamins and essential trace elements in multi-drug resistant tuberculosis patients before and during chemotherapy. Egypt J Chest Dis Tuberc 2016; 65: 441–445.
  • 3- WHO: World Health Organization. Global tuberculosis report. Geneva, Switzerland 20th ed, 2015; http://www.who.int/iris/handle/10665/191102. Description. p 192.
  • 4- Schaaf H S, Moll A P, Dheda K. Multidrug and extensively drug-resistant tuberculosis in Africa and South America: epidemiology, diagnosis and management in adults and children. Clin Chest Med, 2009; 30: 667–683.
  • 5- Anonyme. Programme National de Lutte Contre la Tuberculose (PNLT), Plan Stratégique National 2012 – 2015 de lutte contre la Tuberculose, 2012; p: 65.
  • 6- UN: Union Nation- Projet de document final du Sommet des Nations Unies consacré à l’adoption du programme de développement pour l’après-2015. Soixante-neuvième session. New York, Etats Unis, 2015; http://www.adequations.org/spip.php?article2318, p: 38.
  • 7- Shah NS, Moodley P, Babaria P, et al. Rapid diagnosis of tuberculosis and multidrug resistance by the microscopic-observation drug-susceptibility assay, Am J Respir Crit Care Med 2011; 183:1427–33.
  • 8- Sharma M, Thibert L, Chedore P, et al. Canadian multicenter laboratory study for standardized second-line antimicrobial susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2011; 49: 4112–4116.
  • 9- Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Clin Nutr Metab Care 2009; 12: 646–52.
  • 10- Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 2009; 10: 943–8.
  • 11- Simeone R, Sayes F, Song O, et al. Cytosolic Access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog 2015; 11:
  • 12- Eklund D, Persson HL, Larsson M, et al. Vitamin D enhances IL-1b secretion and restricts growth of mycobacterium tuberculosis in macrophages from TB patients. Int. J. Mycobacteriol 2013; 2: 18–25.
  • 13- Pawar BD, Suryakar AN, Khandelwal AS. Effect of micronutrients supplementation on oxidative stress and antioxidant status in pulmonary tuberculosis. Biomed Res 2011; 22: 455-459.
  • 14- Bhootra YM, Babu S. Malnutrition in Tuberculosis. In: Preedy V., Patel V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham 2018; 19 p.
  • 15- Steingart KR, Sohn H, Schiller I, et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Systeme 2013; Review 1: CD 009593.
  • 16- N’Guessan KK, Alagna R, Dutoziet CC, et al. Genotyping of mutations detected with GeneXpert. Int J Mycobacteriol 2016; 5: 142–147.
  • 17- Zaman Z, Fielden P, Frost PG. Simultaneous determination of vitamins A and E and carotenoids in plasma by reversed-phase HPLC in elderly and younger subjects. Clin Chem 1993; 39: 2229–34.
  • 18- Beglinger Ch., Seibold F, Rogler G. Valeurs standard en laboratoire. http://www.gastro.medline.ch/Services_et_outils/Valeurs_standard_en_laboratoire/Valeurs_standard_en_laboratoire Biochimie.php, 2010, consulté le 02 Septembre 2013.
  • 19- Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 2011; 377: 242–50.
  • 20- Rajendra P, Irfan A, Ram ASK, Wahid A, Mahendra KG, Mohd S. Vitamin A and zinc alter the immune function in tuberculosis. Kuwait Med J 2012; 44:183–189.
  • 21- Irfan A, Srvasttava VK, Prasad M, Yusuf M, Safia, Saleen M, Wahid A. Deficiency of micronutrient status in pulmonary tubercolosis patients in North India. Biomed Res 2011; 22: 449–454.
  • 22- Edem VF, Ige O, Arinola OG, Plasma vitamins and essential trace elements in newly diagnosed pulmonary tuberculosis patients and at different durations of anti-tuberculosis chemotherapy. Egypt J Chest Dis Tuberc 2015; 64: 675–679.
  • 23- Pakasi TA, Karyadi E, Suratih DNM, et al. Zinc and vitamin A supplementation fails to reduce sputum conversion time in severely malnourished pulmonary tuberculosis patients in Indonesia. Nutr J 2010; 9: 41.
  • 24- Bahi GA, Boyvin L, Méité S, et al. Assessments of serum copper and zinc concentration, and the Cu/Zn ratio determination in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) in Côte d’Ivoire. BMC Infectious Diseases 2017; 17: 257.
  • 25- Nelson CD, Renhardt TA, Beitz DC, Lippolis JD. In vivo activation of the intracrine vitamine D pathway in innate immune cells and mammary tissue during a bacterial infection. PLoS One 2010; 5: e15469.
  • 26- Landrier J F. Vitamine D: sources, métabolisme et mécanismes d’action. OCL 2014; 21: 302–309.
  • 27- Mallet E. Dossier Vitamine D: comment mieux comprendre le métabolisme de la vitamine D? Réalités Pédiatriques 2013; 181: 16–20.
  • 28- Murry E. Actualités sur la vitamine D et nouvelles perspectives thérapeutiques. Thèse de Doctorat en Pharmacie. Université Joseph Fourier de Grenoble, France 2011; p:125.
  • 29- Bhimrao DP, Adinath NS, Archana SK. Effect of micronutrients supplementation on oxidative stress and antioxidant status in pulmonary tuberculosis. Biomed Res 2011; 22: 455–459.