GEMİLERDE YAKIT İKMALİ OPERASYONUNDA GERÇEKLEŞMESİ MUHTEMEL KAZALARIN HATA TÜRÜ VE ETKİLERİ ANALİZİ İLE AZALTILMA ÇALIŞMASI

Firmaların rekabet ortamında yerlerini koruyabilmeleri ve ilerleyebilmeleri ancak kalitelerini koruyarak, kendilerini geliştirip iyileştirerek mümkündür. Bu doğrultuda kalite ölçümü ve analizi yapmaları gerekmektedir. Bu amaçla da birden fazla kalite iyileştirme yöntemi geliştirilmiştir. Hata Türü ve Etki Analizi (HTEA) yöntemi de kalite iyileştirme yöntemlerinden biridir. HTEA, bir sistemin potansiyel hata çeşitlerini analiz etmek için benzerliğe, olasılığa, saptanabilirlik ve şiddet derecelerine göre hataları sınıflandıran bir operasyon yönetimi ve ürün geliştirme yöntemidir. Üretim aşamasında ürünlerde ve süreçlerde risklerden kaçınılmasına ve bu faaliyetlerin belgelenmesine odaklanan bir tekniktir. Amacı kalitesizliği önlemek, ürün kusurlarına neden olabilecek potansiyel riskleri ele almak, olası hata türlerini belirleyip sonuçlarını ve önem derecelerini saptamaktır. Bu çalışmada yakıt barcı ve yakıt alan gemi arasında gerçekleşen yakıt ikmali operasyonu, yakıt barcının yanaşması ve demirleme, yakıt transferi süreci ile yakıt barcının ayrılması ve seyre hazırlık olarak üç aşamada ele alınmış ve her bir aşama için tehlikeler tanımlanmıştır. Tanımlanan tehlikeler HTEA kullanılarak operasyon risklerinin azaltılması konusunda çalışmalar yapılmış ve önerilerde bulunulmuştur.

A STUDY ON MINIMIZING POTENTIAL ACCIDENTS IN SHIP BUNKERING OPERATION THROUGH USE OF FAILURE MODE AND EFFECT ANALYSIS

It is only possible for companies to maintain their position and advance in the competitive environment by preserving their quality and by developing and improving themselves. In this direction, they need to make quality measurements and analyses. For this purpose, more than one quality improvement method has been developed. One of the techniques for enhancing quality is the Failure Mode and Effect Analysis (FMEA) method. FMEA is an operations management and product development method that classifies failures according to similarity, probability, detectability, and severity to analyze potential failure types of a system. It is a technique that focuses on avoiding risks in products and processes during the production phase and documenting these activities. Its purpose is to prevent poor quality, address potential risks that may cause product defects, identify possible types of defects, and determine their consequences and severity. In this study, the bunkering operation between the fuel barge and a ship, the berthing and anchoring of the fuel barge, the fuel transfer process, the unberthing of the fuel barge, and the preparation for the voyage were handled in three stages and the hazards were defined for each stage. Bunkering operation hazards have been identified by using FMEA have been conducted to reduce operational risks, and suggestions have been made.

___

  • Akyuz, E., Celik, M., Akgun, I., & Cicek, K. (2018). Prediction of human error probabilities in a critical marine engineering operation on-board chemical tanker ship: The case of ship bunkering. Safety science, 110, 102-109.
  • Arabian-Hoseynabadi, H., Oraee, H., & Tavner, P. J. (2010). Failure modes and effects analysis (FMEA) for wind turbines. International Journal of Electrical Power & Energy Systems, 32(7), 817-824
  • Aran, G. (2006). Kalite iyileştirme sürecinde hata türü etkileri analizi (FMEA) ve bir uygulama (Master's thesis, Gaziosmanpaşa Üniversitesi, Sosyal Bilimleri Enstitüsü).
  • Asadi, F., Phumpho, S., & Pongswatd, S. (2020). Remote monitoring and alert system of HV transformer based on FMEA. Energy Reports, 6, 807-813.
  • Ceylan, B. O. (2023). Shipboard compressor system risk analysis by using rule-based fuzzy FMEA for preventing major marine accidents. Ocean Engineering, 272, 113888.
  • Ceylan, B. O., Akyar, D. A., & Celik, M. S. (2023). A novel FMEA approach for risk assessment of air pollution from ships. Marine Policy, 150, 105536.
  • Chang, C. H., Kontovas, C., Yu, Q., & Yang, Z. (2021). Risk assessment of the operations of maritime autonomous surface ships. Reliability Engineering & System Safety, 207, 107324.
  • Cicek, K., & Celik, M. (2013). Application of failure modes and effects analysis to main engine crankcase explosion failure on-board ship. Safety science, 51(1), 6-10.
  • Çeber, Y. (2010). Hata türü ve etkileri analizi yönteminin (FMEA) üretim sektöründe uygulanması (Doctoral dissertation, DEÜ Sosyal Bilimleri Enstitüsü).
  • Du, Z., Yu, S., & Chen, Z. (2022). Enhanced Minimum-Cost Conflict Risk Mitigation-Based FMEA for Risk Assessment in a Probabilistic Linguistic Context. Computers & Industrial Engineering, 108789.
  • Emovon, I. (2016). Failure mode and effects analysis of ship systems using an integrated dempster shafer theory and electre method. Journal of Advanced Manufacturing Technology (JAMT), 10(1), 45-60.
  • Göksu, S. (2021). Emniyetli gemi operasyonları için hata türleri ve etkileri analizi (FMEA)'ne dayalı risk değerlendirme modeli geliştirilmesi (Doctoral dissertation, Lisansüstü Eğitim Enstitüsü).
  • Hassan, S., Wang, J., Kontovas, C., & Bashir, M. (2022). Modified FMEA hazard identification for cross-country petroleum pipeline using Fuzzy Rule Base and approximate reasoning. Journal of Loss Prevention in the Process Industries, 74, 104616.
  • Kamal, B., & Kutay, Ş. (2021). Assessment of causal mechanism of ship bunkering oil pollution. Ocean & Coastal Management, 215, 105939.
  • Kardos, P., Lahuta, P., & Hudakova, M. (2021). Risk Assessment Using the FMEA method in the Organization of Running Events. Transportation Research Procedia, 55, 1538-1546.
  • Kaya, S. Ş., & ALAYKIRAN, K. (2019). Hata türü ve etkileri analizi ve döküm sektöründe bir uygulama. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 1(2), 76-89.
  • Kleindorfer, P. R., Singhal, K., & Van Wassenhove, L. N. (2005). Sustainable operations management. Production and operations management, 14(4), 482-492.
  • Luttropp, C., & Lagerstedt, J. (2006). EcoDesign and The Ten Golden Rules: generic advice for merging environmental aspects into product development. Journal of cleaner production, 14(15-16), 1396-1408.
  • MENTES, A., & YİĞİT, M. (2020) GEMİ GERİ DÖNÜŞÜM TESİSLERİ VE RİSK DEĞERLENDİRMESİ. GİDB Dergi, (18).
  • Ozkok, M. (2014). Risk assessment in ship hull structure production using FMEA. Journal of Marine Science and Technology, 22(2), 8.
  • ÖZFIRAT, M., & ÖZFIRAT, P. M. (2021). Yangın Safhalarının HTEA Risk Analizi ile İncelenmesi. Karaelmas Journal of Occupational Health and Safety, 5(1), 37-44.
  • Özkiliç, Ö. (2005). İş sağliği ve güvenliği, yönetim sistemleri ve risk değerlendirme metodolojileri. TİSK Yayınları, Ankara.
  • Pinheiro, M. A. P., Jugend, D., Demattê Filho, L. C., & Armellini, F. (2018). Framework proposal for ecodesign integration on product portfolio management. Journal of Cleaner Production, 185, 176-186.
  • Prajapati, D. R. (2012). Implementation of failure mode and effect analysis: a literature review. International Journal of Managment, IT and Engineering, 2(7), 264-292.
  • Ramere, M. D., & Laseinde, O. T. (2021). Optimization of condition-based maintenance strategy prediction for aging automotive industrial equipment using FMEA. Procedia Computer Science, 180, 229-238
  • Tafur, H. D., Barbieri, G., & Pereira, C. E. (2021). An FMEA-based Methodology for the Development of Control Software Reliable to Hardware Failures. IFAC-PapersOnLine, 54(1), 420-425.
  • Usuğ, C. (2002). Hata Türleri ve Etkileri Analizi (HTEA) ve Üretim ve Hizmet Sektörü Uygulamaları (Doctoral dissertation, Marmara Universitesi (Turkey)).
  • von Ahsen, A., Petruschke, L., & Frick, N. (2022). sustainability Failure Mode and Effects Analysis–A systematic literature review. Journal of cleaner Production, 132413.
  • Yılmaz, B. S. (2000). Hata türü ve etki analizi. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2(4).
  • Zaman, M. B., Kobayashi, E., Wakabayashi, N., Khanfir, S., Pitana, T., & Maimun, A. (2014). Fuzzy FMEA model for risk evaluation of ship collisions in the Malacca Strait: based on AIS data. Journal of Simulation, 8(1), 91-104.