Gemilerde Karbonsuzlaştırma Tekniklerinin Değerlendirilmesi

Gemilerden kaynaklanan CO2 emisyonlarının, küresel ısınma nedeniyle IMO tarafından getirilen düzenlemeler ile azaltması amaçlanmaktadır. Bu düzenlemeler, karbon salınımını kademeli olarak azaltmayı hedeflemektedir. Bu çalışma, getirilen düzenlemelere uygun olarak gemilerden kaynaklanan karbon emisyonlarının azaltılmasına yönelik en son gelişmeleri ortaya koymaktadır. Karbon salınımını azaltmak için temel olarak üç farklı teknik kullanılmaktadır. Bunlar hidrojen ve amonyak gibi karbon atomu içermeyen temiz alternatif yakıtların kullanılması, diğeri ise elektrikli gemi sevk sistemlerinin kullanılması ve son olarak karbon yakalama sistemlerinin kullanılmasıdır. Çalışma içerisinde kullanılan tekniklerin potansiyelleri, avantaj ve dezavantajlarından bahsedilmiştir. Çalışma sonucunda karbon yakalama sistemlerinin karbon salınımını %90 seviyelerine kadar azalttığı görülmüştür. Uygun depolama uygulamaları ile CO2 emisyonlarının önemli ölçüde azaltılabileceği ortaya konulmuştur.

Evaluation of Decarbonization Methods on Ships

Reducing CO2 emissions from ships is regulated by the IMO due to global warming. The regulations aim to reduce carbon emissions gradually. This paper highlights the most recent developments for reducing carbon emissions from ships in compliance with the applicable regulations. Basically, three different techniques are used to reduce carbon emissions. These are the use of clean alternative fuels that do not contain carbon atoms, such as hydrogen and ammonia; the other is the use of ship propulsion systems that can be propelled by electricity; and finally, the use of carbon capture systems. As a result of the study, the potential, advantages, and disadvantages of the techniques used are mentioned. As a result of the study, it was found that carbon capture systems reduce carbon emissions by up to 90%. One of the findings is that CO2 emissions can be significantly reduced with appropriate storage practices.

___

  • Albazzaz, S. (2020). Understanding and Minimising Water Vapour Co-Adsorption for Activated Carbons in Post- Combustion CO2 Capture (Issue July). The University of Nottingham.
  • Babu, P., Ong, H. W. N., & Linga, P. (2016). A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy, 94, 431–442. https://doi.org/10.1016/j.energy.2015.11.009
  • Bayramoğlu, K., Yilmaz, S., & Nuran, M. (2022). Energy and exergy analyses of hydrogen addition in a diesel engine. International Journal of Exergy, 37(4), 377. https://doi.org/10.1504/ijex.2022.10046104
  • Bayramoğlu, K., & Yılmaz, S. (2021). Emission and performance estimation in hydrogen injection strategies on diesel engines. International Journal of Hydrogen Energy, 46(57), 29732–29744. https://doi.org/10.1016/j.ijhydene.2020.08.135
  • Blount, G., Gorensek, M., Hamm, L., O’Neil, K., & Kervévan, C. (2017). CO2-Dissolved and Aqueous Gas Separation. Energy Procedia, 114(November 2016), 2675–2681. https://doi.org/10.1016/j.egypro.2017.03.1451
  • Cachola, C. da S., Ciotta, M., Azevedo dos Santos, A., & Peyerl, D. (2023). Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science and Technology, 7(December 2022), 100102. https://doi.org/10.1016/j.ccst.2023.100102
  • Caliskan, H., Dincer, I., & Hepbasli, A. (2013). Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study. Applied Thermal Engineering, 61(2), 784–798. https://doi.org/10.1016/j.applthermaleng.2012.04.026
  • Chai, W. S., Bao, Y., Jin, P., Tang, G., & Zhou, L. (2021). A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renewable and Sustainable Energy Reviews, 147(January), 111254. https://doi.org/10.1016/j.rser.2021.111254
  • Diab, F., Lan, H., & Ali, S. (2016). Novel comparison study between the hybrid renewable energy systems on land and on ship. Renewable and Sustainable Energy Reviews, 63, 452–463. https://doi.org/10.1016/j.rser.2016.05.053
  • Dimitriou, P., & Javaid, R. (2020). A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 45(11), 7098–7118. https://doi.org/10.1016/j.ijhydene.2019.12.209
  • Dimitriou, P., Kumar, M., Tsujimura, T., & Suzuki, Y. (2018). Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine. International Journal of Hydrogen Energy, 43(29), 13605–13617. https://doi.org/10.1016/j.ijhydene.2018.05.062
  • Dinesh, M. H., & Kumar, G. N. (2022). Effects of compression and mixing ratio on NH3/H2 fueled Si engine performance, combustion stability, and emission. Energy Conversion and Management: X, 15(May), 100269. https://doi.org/10.1016/j.ecmx.2022.100269
  • DNV GL. (2022). EEXI—Energy Efficiency Existing Ship Index. https://www.dnvgl.com/maritime/insights/ topics/eexi/index.html
  • Dotto, A., Satta, F., & Campora, U. (2023). Energy, environmental and economic investigations of cruise ships powered by alternative fuels. Energy Conversion and Management, 285(February), 117011. https://doi.org/10.1016/j.enconman.2023.117011
  • Eu. (2022). Reducing emissions from the shipping sector. European Comission.
  • Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., & Stevenson, D. S. (2010). Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment, 44(37), 4735–4771. https://doi.org/10.1016/j.atmosenv.2009.04.059
  • Feenstra, M., Monteiro, J., van den Akker, J. T., Abu-Zahra, M. R. M., Gilling, E., & Goetheer, E. (2019). Ship-based carbon capture onboard of diesel or LNG-fuelled ships. International Journal of Greenhouse Gas Control, 85(January), 1–10. https://doi.org/10.1016/j.ijggc.2019.03.008
  • Hoang, A. T., Foley, A. M., Nižetić, S., Huang, Z., Ong, H. C., Ölçer, A. I., Pham, V. V., & Nguyen, X. P. (2022). Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. Journal of Cleaner Production, 355(April). https://doi.org/10.1016/j.jclepro.2022.131772
  • Hou, Y., Kang, K., & Liang, X. (2019). Vessel speed optimization for minimum EEOI in ice zone considering uncertainty. Ocean Engineering, 188(August), 106240. https://doi.org/10.1016/j.oceaneng.2019.106240
  • Howell, A., Hubatova, M., Stamatiou, N., Spiliotis, P., Mandel, J., Bjerregaard, A. K., Bjork, S. A., Bettles, J., & McKenna, B. (2022). The role for investors in decarbonizing global shipping.
  • Huang, M., He, W., Incecik, A., Cichon, A., Królczyk, G., & Li, Z. (2021). Renewable energy storage and sustainable design of hybrid energy powered ships: A case study. Journal of Energy Storage, 43(August). https://doi.org/10.1016/j.est.2021.103266
  • IMO. (2005). Prevention of Air Pollution from Ships: MARPOL Annex VI - Proposal to Initiate a Revision Process. Regulation, MEPC 53/4/(April), 12. https://www.epa.gov/sites/production/files/2016-09/documents/marpol-propose-revision-4-05.pdf
  • IMO. (2014). 2014 Guidelines on the method of calculation of the attained Energy Efficiency Design Endex (EEDI) for new ships. In Resolution MEPC.245(66).
  • IMO. (2020). International Convention for the Prevention of Pollution from Ships.
  • IMO. (2022). Marine Environment Protection Committee (MEPC) – 79th session, 12-16 December 2022.
  • IPCC. (2022). Climate Change 2022 Mitigation of Climate Change. https://doi.org/10.18356/9789210012973c007
  • Jansen, D., Gazzani, M., Manzolini, G., Dijk, E. Van, & Carbo, M. (2015). Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 40, 167–187. https://doi.org/10.1016/j.ijggc.2015.05.028
  • Jathar, L. D., Ganesan, S., Shahapurkar, K., Soudagar, M. E. M., Mujtaba, M. A., Anqi, A. E., Farooq, M., Khidmatgar, A., Goodarzi, M., & Safaei, M. R. (2022). Effect of various factors and diverse approaches to enhance the performance of solar stills: a comprehensive review. In Journal of Thermal Analysis and Calorimetry (Vol. 147, Issue 7). Springer International Publishing. https://doi.org/10.1007/s10973-021-10826-y
  • Jeong, B., Jang, H., Lee, W., Park, C., Ha, S., Kim, D. K., & Cho, N. K. (2022). Is electric battery propulsion for ships truly the lifecycle energy solution for marine environmental protection as a whole? Journal of Cleaner Production, 355(April), 131756. https://doi.org/10.1016/j.jclepro.2022.131756
  • Kojima, Y. (2019). Hydrogen storage materials for hydrogen and energy carriers. International Journal of Hydrogen Energy, 44(33), 18179–18192. https://doi.org/10.1016/j.ijhydene.2019.05.119
  • Law, L. C., & Othman, M. R. (2022). Numerical Analyses on Performance of Low Carbon Containership. SSRN Electronic Journal, 9, 3440–3457. https://doi.org/10.2139/ssrn.4266660
  • Liang, Z. (Henry), Rongwong, W., Liu, H., Fu, K., Gao, H., Cao, F., Zhang, R., Sema, T., Henni, A., Sumon, K., Nath, D., Gelowitz, D., Srisang, W., Saiwan, C., Benamor, A., Al-Marri, M., Shi, H., Supap, T., Chan, C., … Tontiwachwuthikul, P. (PT). (2015). Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. International Journal of Greenhouse Gas Control, 40(January), 26–54. https://doi.org/10.1016/j.ijggc.2015.06.017
  • Machaj, K., Kupecki, J., Malecha, Z., Morawski, A. W., Skrzypkiewicz, M., Stanclik, M., & Chorowski, M. (2022). Ammonia as a potential marine fuel: A review. Energy Strategy Reviews, 44(March), 100926. https://doi.org/10.1016/j.esr.2022.100926
  • Malekli, M., & Aslani, A. (2022). A novel post-combustion CO2 capture design integrated with an Organic Rankine Cycle (ORC). Process Safety and Environmental Protection, 168(August), 942–952. https://doi.org/10.1016/j.psep.2022.10.076
  • MEPC.213(63). (2012). 2012 GUIDELINES FOR THE DEVELOPMENT OF A SHIP ENERGY EFFICIENCY MANAGEMENT PLAN (SEEMP). IMO, 213.
  • Nasirudin, A., Chao, R. M., & Utama, I. K. A. P. (2017). Solar powered boat design optimization. Procedia Engineering, 194, 260–267. https://doi.org/10.1016/j.proeng.2017.08.144
  • Nuchturee, C., Li, T., & Xia, H. (2020). Energy efficiency of integrated electric propulsion for ships – A review. Renewable and Sustainable Energy Reviews, 134(September 2019), 110145. https://doi.org/10.1016/j.rser.2020.110145
  • Perera, L. P., & Mo, B. (2016). Emission control based energy efficiency measures in ship operations. Applied Ocean Research, 60, 29–46. https://doi.org/10.1016/j.apor.2016.08.006
  • Polakis, M., Zachariadis, P., & De Kat, J. O. (2019). The energy efficiency design index (EEDI). In Sustainable Shipping: A Cross-Disciplinary View. https://doi.org/10.1007/978-3-030-04330-8_3
  • Rutherford, D., Mao, X., & Comer, B. (2020). Potential CO2 reductions under the Energy Efficiency Existing Ship Index. INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION, November. https://vpoglobal.com/wp-content/uploads/2020/10/Potential-CO-2-reductions-under-the-Energy-Efficiency.pdf
  • Seddiek, I. S., & Ammar, N. R. (2023). Technical and eco-environmental analysis of blue/green ammonia-fueled RO/RO ships. Transportation Research Part D: Transport and Environment, 114(September 2022), 103547. https://doi.org/10.1016/j.trd.2022.103547
  • Song, Q., Tinoco, R. R., Yang, H., Yang, Q., Jiang, H., Chen, Y., & Chen, H. (2022). A comparative study on energy efficiency of the maritime supply chains for liquefied hydrogen, ammonia, methanol and natural gas. Carbon Capture Science and Technology, 4(April). https://doi.org/10.1016/j.ccst.2022.100056
  • Stec, M., Tatarczuk, A., Iluk, T., & Szul, M. (2021). Reducing the energy efficiency design index for ships through a post-combustion carbon capture process. International Journal of Greenhouse Gas Control, 108(March), 103333. https://doi.org/10.1016/j.ijggc.2021.103333
  • Theo, W. L., Lim, J. S., Hashim, H., Mustaffa, A. A., & Ho, W. S. (2016). Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 183, 1633–1663. https://doi.org/10.1016/j.apenergy.2016.09.103
  • Wang, Z., Zhao, F., Dong, B., Wang, D., Ji, Y., Cai, W., & Han, F. (2023). Life cycle framework construction and quantitative assessment for the hydrogen fuelled ships: A case study. Ocean Engineering, 281(May), 114740. https://doi.org/10.1016/j.oceaneng.2023.114740
  • Woodcock, J., Banister, D., Edwards, P., Prentice, A. M., & Roberts, I. (2007). Energy and transport. Lancet, 370(9592), 1078–1088. https://doi.org/10.1016/S0140-6736(07)61254-9
  • Yapicioglu, A., & Dincer, I. (2018). Performance assesment of hydrogen and ammonia combustion with various fuels for power generators. International Journal of Hydrogen Energy, 43(45), 21037–21048. https://doi.org/10.1016/j.ijhydene.2018.08.198
  • Yuan, Y., Wang, J., Yan, X., Shen, B., & Long, T. (2020). A review of multi-energy hybrid power system for ships. Renewable and Sustainable Energy Reviews, 132(June), 110081. https://doi.org/10.1016/j.rser.2020.110081
  • Zheng, J., Hu, H., & Dai, L. (2013). How would EEDI influence Chinese shipbuilding industry? Maritime Policy & Management, 40(5), 495–510. https://doi.org/10.1080/03088839.2013.797121