Scenedesmus obliquus Suşlarının Farklı Besin Ortamlarındaki Büyüme Kinetiği
Bu çalışmada, farklı besi ortamları ve doğal maden sularının Scenedesmus obliquus (Turpin) Kützing’in büyüme dinamikleri üzerine etkileri araştırılmıştır. S. obliquus suşları, Ankara (Türkiye) ilindeki çeşitli tatlı su kuyuları ve havuzlarından alınan örneklerden izole edilmiştir. İzole edilen üç S. obliquus suşunun üretiminde, dört kültür besi ortamı ile dört doğal maden suyu kullanılmıştır. Kültürlerin hücre yoğunluğu, kuru ağırlık miktarı, spesifik büyüme oranları, ikilenme süreleri ve klorofil-a miktarları hesaplanmıştır. Sonuçlar, farklı kültür besi ortamları ve doğal mineralli suların, son hücre yoğunluğunu, biyokütleyi ve suşların büyüme oranlarını önemli ölçüde etkilediğini göstermektedir. Bu üç suş içerisinde, ScnGP suşunda diğerlerine oranla hücre yoğunluğu, biyokütle ağırlığı ve spesifik büyüme hızı açısından anlamlı bir fark bulunmuştur. Hücre yoğunluğu (7,4x104±1,3x103 hücre/mL), biyokütle miktarı (0,212±0,032 g/mL), spesifik büyüme oranı (0,024 h-1 ) ve klorofil-a (1,71±0,22 µg/mL) miktarı Bold Wynne besi ortamında yetişen ScnGP suşunda diğer uygulamalara göre önemli ölçüde (P
Growth Kinetics of Scenedesmus obliquus Strains in Different Nutrient Media
In this study, the effects of different media and natural mineral waters on thegrowth dynamics of Scenedesmus obliquus (Turpin) Kützing were investigated.S. obliquus strains were isolated from various freshwater wells and pools inAnkara, Turkey. In the production of three S. obliquus strains, both four culturemedium and four natural mineral waters were used. Cell density, dry weight,specific growth rates, duplication time and chlorophyll-a of the cultures werecalculated. The results showed that the different culture media and natural mineralwaters significantly affected the final cell density, biomass and growth rates ofstrains. In three isolates, there was a significant difference in ScnGP strain interms of cell density, biomass weight and specific growth rate compared to others.Cell density (7.4x104±1.3x103cells/mL), biomass amount (0.212±0.032g/mL),specific growth rate (0.024 h-1) and chlorophyll-a (1.71±0.22µg/mL) of ScnGPgrown in Bold Wynne medium were significantly (P
___
- Al-Shatri AH, Ali E, Al-Shorgani NK, Kalil MS. 2014.
Growth of Scenedesmus dimorphus in different algal
media and pH profile due to secreted metabolites. Afr
J Biotechnol. 13 (16):1714-1720.
doi: 10.5897/AJB2013.13455
- Andersen RA, Berges JA, Harrison PJ. 2005. Recipes for
freshwater and seawater media. In: Andersen RA
editor. Algal culturing techniques. London: Elsevier
Academic Press. p. 429-538.
- Bhamawat PM. 2010. Growth of Chlamydomonas
reinhardtii under nutrient-limited conditions in
steady-state bioreactors [Master's Thesis]. Faculty of
the Graduate School of Cornell University. 83 p.
- Blair MF, Kokabian B, Gude VG. 2013. Light and growth
medium effect on Chlorella vulgaris
biomass production. Journal of Environmental Chemical
Engineering. 2(1):665-674.
doi: 10.1016/j.jece.2013.11.005
- Brennan L, Owende P. 2010. Biofuels form microalgae a
review of technologies for production, processing and
extractions of biofuels and co-products. Renew Sust
Energ Rev. 14(2):557-577.
doi: 10.1016/j.rser.2009.10.009
- Chen M, Li L, Dai X, Sun Y, Chen F. 2011. Effect of
phosphorus and temperature on chlorophyll a contents
and cell sizes of Scenedesmus obliquus and
Microcystis aeruginosa. Limnology. 12(2):187-192.
doi: 10.1007/s10201-010-0336-y
- Chia MA, Lombardi AT, Melao MGG. 2013. Growth and
biochemical composition of Chlorella vulgaris in
different growth media. Annals of the Brazilian
Academy of Sciences. 85(4):1427-1438.
doi: 10.1590/0001-3765201393312
- Chu ZS, Jin XC, Yan F, Zheng SF, Pang Y, Zeng QR.
2007. Effects of EDTA and iron on growth and
competition of Microcystis aeruginosa and
Scenedesmus quadricauda. Huanjing Kexue/Environ
Sci. 28(11): 2457-2461.
- Eida MF, Darwesh OM, Matter IA. 2018. Cultivation of
oleaginous microalgae Scenedesmus obliquus on
secondary treated municipal wastewater as growth
medium for biodiesel production. Journal of
Ecological Engineering. 19(5):38-51.
doi: 10.12911/22998993/91274
- Fallahi M, Rahbary SH, Shamsaii M. 2014. Determination
of optimum concentration of diuron for the growth and
bloom of the algae (Scenedesmus obliquus) in in vitro
condition. Iran J Fish Sci. 13(3):739-747.
- Godoy-Hernández G, Vázquez-Flota FA. 2006. Growth
measurements: estimation of cell division and cell
expansion. In: Loyola-Vargas VM, Vázquez-Flota F.
editors. Methods in molecular biology. New Jersey:
Humana Press Inc. 877:41-48.
- Guillard RRL, Sierachiki MS 2005. Counting cells in
cultures with the light microscope. In: Andersen RA
editor. Algal culturing techniques. London: Elsevier
Academic Press. p. 239-252.
- Guiry MD, Guiry GM. 2018. AlgaeBase; [cited: 2018 Oct
21]. Available from http://www.algaebase.org.
- Hodaifa G, Martínez ME, Sánchez S. 2008. Use of
industrial wastewater from olive-oil extraction for
biomass production of Scenedesmus obliquus.
Bioresource Technol. 99(5):1111-1117.
doi: 10.1016/j.biortech.2007.02.020
- Humpry AM. 2004. Chlorophyll as a color and functional
ingredient. J Food Sci. 69(5):422-425.
doi: 10.1111/j.1365-2621.2004.tb10710.x
- Kabir M, Hoseini SA, Ghorbani R, Kashiri H. 2017.
Performance of microalgae Chlorella vulgaris and
Scenedesmus obliquus in wastewater treatment of
Gomishan (Golestan-Iran) shrimp farms. Aquaculture,
Aquarium, Conservation and Legislation -
International Journal of the Bioflux Society.
10(3):622-632.
- Latiffi NAA, Mohamed RM, Apandi NM, Tajuddin RM.
2017. Preliminary assessment of growth rates on
different concentration of microalgae Scenedesmussp.
in industrial meat food processing wastewater.
International Symposium On Civil And
Environmental Engineering. 103: 1-9.
doi: 10.1051/matecconf/20171030
- Liang K, Zhang Q, Gu M, Cong W. 2013.
Effect of phosphorus on lipid accumulation in
freshwater microalgae Chlorella sp. J Appl Phycol.
25(1):311-318.
doi: 10.1007/s10811-012-9865-6
- Murdock JN, Wetzel DL. 2009. FT-IR Microspectroscopy
enhances biological and ecological analysis of algae.
Appl Spectroscopy Rev. 44(4):335-361.
doi: 10.1080/05704920902907440
- Parvin M, Zannat MN, Habib MAB. 2007. Two important
technique for isolation of microalgae. Asian Fisheries
Science. 20:117-124.
- Prescott GW. 1973. Algae of the western great lakes area.
Michigan: C. Brown Company Publishers 977 p.
Pringsheim E. 1946. Pure cultures of algae. Cambridge:
University Press 119 p.
- Rasmussen RS, Morrissey T, Steve LT. 2007. Marine
biotechnology for production of food ingredients.
Advances in Food and Nutrition Research. 237-292.
doi: 10.1016/S1043-4526(06)52005-4
- Rinanti A, Kardena E, Astuti DI, Dewi K. 2013. Growth
response and chlorophyll content of Scenedesmus
obliquus cultivated in different artificial media. Asian
Journal of Environmental Biology. 1(1):1-9.
doi: 10.13140/RG.2.1.3370.7926
- Salama ES, Kim HC, Abou-Shanab RAI et al. 2013.
Biomass, lipid content, and fatty acid composition of
freshwater Chlamydomonas mexicana and
Scenedesmus obliquus grown under salt stress.
Bioproc Biosyst Eng. 36(6):827-833.
doi: 10.1007/s00449-013-0919-1
- Sforza E, Gris B, Silva C, Morosinotto T, Bertucco A.
2014. Effects of light on cultivation Scenedesmus
obliquus in batch and continuous flat plate
photobioreactor. Chemical Engineering Transactions.
38:211-216.
doi: 10.3303/CET1438036
- Shelly K, Heraud P, Beardall J. 2002. Nitrogen limitation
in Dunaliella tertiolecta (Chlorophyceae) leads to
increased susceptibility to damage by UV-B radiation
but also increased repair capacity. J Phycol. 38:1-8.
doi: 10.1046/j.1529-8817.2002.01147.x
- Toyub MA, Miah MI, Habib MAB, Rahman MM. 2008.
Growth performance and nutritional value of
Scenedesmus obliquus cultured in different
concentrations of sweetmeat factory waste media.
Bangladesh Journal of Animal Science. 37(1):86-93.
doi: 10.3329/bjas.v37i1.9874
- Wang B, Li Y, Wu N, Lan CQ. 2008. CO2 bio-mitigation
using microalgae. Appl Microbiol Biot 79(5):707-
718.
doi: 10.1007/s00253-008-1518-y
- Youngman RE. 1978. Measurement of chlorophyll-a. New
York: Water Research Centre Technical Report.
Report No: TR82.