Yüksek Yoğunluklu Polietilen Atık Plastiğinin Pirolizinden Elde Edilen Ürünlerin Ilık Karışım Asfalt Katkısı Olarak İncelenmesi

Ilık karışım asfalt (IKA), geleneksel bitümlü sıcak karışımdan (BSK) daha düşük sıcaklıklarda serilip sıkıştırılabilen yeni bir karışım türüdür. Bu çalışmada, yüksek yoğunluklu polietilen (YYPE) türündeki atık plastiklerin pirolizinden elde edilen çar ve vaks ürünlerin IKA üzerindeki etkileri incelenmiştir. Çar ve vaks ürünler, sırasıyla 300-350ºC ve 450-500ºC sıcaklık aralıklarında, 900 gr numune kullanılarak yavaş piroliz yöntemi ile üretilmiştir. Piroliz ürünleri (bitüm ağırlığınca %6 oranında) saf bitümle (B50/70) modifiye edilerek 3 farklı formda katkılı bitüm hazırlanmıştır: YYPEPÇ (YYPE piroliz çar) modifiyeli bitüm, YYPEPV (YYPE piroliz vaks) modifiyeli bitüm ve YYPEPÇV (YYPE piroliz çar ve vaks) modifiyeli bitüm. Saf ve modifiye bitümlere penetrasyon, yumuşama noktası ve viskozite testleri yapılarak katkıların bitüm üzerindeki fiziksel değişimleri incelenmiştir. Ayrıca eşdeğer viskoz yöntemi ile modifiye bitümlerin karıştırma-sıkıştırma sıcaklıkları tespit edilmiştir. Bunun yanı sıra, hem saf bitümle hazırlanan BSK’ya hem de piroliz katkıları ile hazırlanan IKA’lara Marshall stabilite-akma analizi yapılmıştır. Bitümlü bağlayıcı test sonuçları gösteriyor ki, piroliz çarı saf bitümü sertleştirirken, vaks ürün yumuşatmaktadır. Dolayısıyla, çar ürünün etkisi ile bitümün pentrasyonu azalırken, yumuşama noktası artmaktadır. Vaks ürünün etkisiyle ise tersi sonuçlar elde edilmiştir. Saf bitüme kıyasla modifiye bitümlerin karıştırma-sıkıştırma sıcaklıklarındaki azalma değerleri YYPEPV, YYPEPÇV ve YYPEPÇ modifiyeli bitümler için sırasıyla 24ºC, 14,5 ºC ve 3,5ºC olmuştur. IKA’ların Marshall stabilite değeri, BSK’dan az bir farkla daha düşük olmasına rağmen şartname limit değerini rahatlıkla sağlamıştır.

Investigation of Products Obtained from Pyrolysis of High Density Polyethylene Waste Plastic as a Warm Mix Asphalt Additive

Warm mix asphalt (WMA) is a new technology that can be mixed and compacted at lower temperatures than hot mix asphalt (HMA). In this study, the effect of pyrolytic products (char and wax) obtain from the waste plastic (High Density Polyethylene-HDPE) on warm mix asphalt was investigated. Char and wax products were produced by slow pyrolysis method using 900 gr samples at the temperature ranges of 300-350ºC and 450-500ºC, respectively. These products were modified with virgin bitumen (at a rate of 6% by weight of bitumen) in the form of 3 modified bitumen: HDPE Pyrolysis Char (HDPEPC) modified bitumen, HDPE Pyrolysis Wax (HDPEPW) modified bitumen, HDPE Pyrolysis Char+Wax (HDPEPCW) modified bitumen. Penetration, softening point and viscosity tests were carried out to determine the physical properties of modified bitumen and virgin bitumen. Besides, Marshall Test Method was conducted to compare stability performance of the mixtures. The results show that, the addition of char decreased penetration value and increased softening point of virgin bitumen. The opposite results were obtained with the effect of the wax. According to the equivalent viscous method, the mixing and compaction temperature of the bituminous mixture can be reduced by 24ºC, 14,5ºC and 3,5ºC, respectively, when HDPEPW, HDPEPCW and HDPEPC are added to the bitumen. Marshall Test results show that the stability values of the WMA samples were slightly lower than the HMA sample and were also above the specification limits.

___

  • Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R. and Gul, K. (2014, March). Pyrolysis study of polypropylene and polyethylene into premium oil products, International Journal of Green Energy, vol. 12, pp. 663-671. doi: 10.1080/15435075.2014.880146.
  • Al-Hadidy, A.I. (2006). Evaluation of Pyrolisis Polypropylene Modified Asphalt Paving Materials, Al-Rafidain Engineering Journal (AREJ), vol.14 (2), pp. 36-50. doi: 10.33899/rengj.2006.46555
  • Al-Hadidy, A.I. and Tan, Y. (2009, September). Evaluation of pyrolysis LDPE modified asphalt paving materials, Journal of Materials in Civil Engineering, vol.21 (10), pp. 618-623. doi: 10.1061/.ASCE.0899-1561.2009.21:10.618.
  • Almeida, A., Capitão, S., Estanqueiro, C. and Picado-Santosc, L. (2021, April). Possibility of incorporating waste plastic film flakes into warm-mix asphalt as a bitumen extender, Construction and Building Materials, vol.291, 123384. doi: 10.1016/j.conbuildmat.2021.123384.
  • American Society for Testing and Materials. (2013). Standard No: ASTM D5/D5M-13. Standard Test Method for Penetration of Bituminous Materials
  • American Society for Testing and Materials. (2020). Standard No: ASTM D36/D36M-14. Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)
  • American Society for Testing and Materials. (2015). Standard No: ASTM D4402/D4402M-15. Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer.
  • American Society for Testing and Materials. (2020). Standard No: ASTM D6926-20. Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus.
  • American Society for Testing and Materials. (2015). Standard No: ASTM D6927-15. Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures
  • Appiah, J.K., Berko-Boateng, V.N., and Tagbor, T.A. (2017). Use of waste plastic materials for road construction in Ghana, Case Studies in Construction Materials, vol.6, pp. 1-7. http://dx.doi.org/10.1016/j.cscm.2016.11.001
  • Arabani, M. and Pedram, M. (2016, May). Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles, Construction and Building Materials, vol.116, pp. 378-383. http://dx.doi.org/10.1016/j.conbuildmat.2016.04.105
  • Asphalt mix design methods, (2014), Yer: Asphalt Institute.
  • Attaelmanan, M., Feng, P.C. and AI, A. (2011, January). Laboratory evaluation of HMA with high density polyethylene as a modifier, Construction and Building Materials, vol.25, pp. 2764-2770. doi:10.1016/j.conbuildmat.2010.12.037.
  • Cepeliogullar, O. and Putun, A.E. (2013). Utilization of two different types of plastic wastes from daily and industrial life, International Conference on Environmental Science and Technology. Cappadocia, Turkey.
  • Costa, L.M.B., Silva, H.M.R.D., Peralta, J. and Oliveira, J.R.M. (2019). Using waste polymers as a reliable alternative for asphalt binder modification – Performance and morphological assessment, Construction and Building Materials, vol.198, pp.237-244. https://doi.org/10.1016/j.conbuildmat.2018.11.279.
  • Hınıslıoğlu, S. and Ağar., E. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix, Materials Letters, vol.58, pp.367-271. doi:10.1016/S0167-577X(03)00458-0
  • Karayolu teknik şartnamesi, (2013), Yer: Karayolları Genel Müdürlüğü.
  • Kumar, S. and Singh, R.K. (2011, October-December). Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis, Brazilian Journal of Chemical Engineering, vol. 28 (4), pp. 659–667.doi: :10.1590/S0104-66322011000400011.
  • PlasticsEurope (the Association of Plastics Manufacturers in Europe) (2020, December). Plastics – the Facts 2020: An analysis of European plastics production, demand and waste data. Retrieved September 4, 2021, from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/
  • Rubio, M.C., Martínez, G., Baena, L. and Moreno, F. (2012). Warm mix asphalt: an overview, Journal of Cleaner Production, vol. 24, pp. 76-84. doi:10.1016/j.jclepro.2011.11.053
  • Shang, L., Wang, S., Zhang, Y. and Zhang, Y. (2011, February). Pyrolyzed wax from recycled cross-linked polyethylene as warm mix asphalt (WMA) additive for SBS modified asphalt, Construction and Building Materials, vol. 25 (2) , pp. 886–891.https://doi.org/10.1016/j.conbuildmat.2010.06.097