Toprak Barajlardaki Plastik Noktaların Dağılımının Su Seviyesi, Banket ve Deplasmanına Göre Sayısal Analizi

Toprak barajların sismik koşullar altında çökmesi oldukça yıkıcı ekonomik hasarlara ve can kayıplarına neden olabilir. Bu nedenle sismik güvenlik değerlendirmesi ve sayısal analizlerin etkin bir şekilde yapılması gerekmektedir. Bu makale, toprak barajların plastik noktalarının dağılımının sonuçlarını sunmaktadır. Plastik noktaların analizi, göçme öncesi koşullarda toprak barajın gövdesindeki plastikleşme değişimlerini gösterir. 10 m yüksekliğinde dik kil çekirdekli homojen olmayan bir dolgu, PLAXIS 2D yazılımı kullanılarak harmonik ve statik mod dikkate alınarak üç farklı su seviyesinde incelenmiştir. Suyun varlığı yapıdaki plastik nokta sayısının artmasına ve yer değiştirme miktarının artmasına neden olmaktadır. Sonuç olarak, plastik noktaların durumunu ve maksimum yer değiştirmelerin görünümünün yerini değiştirir. Birinci, ikinci ve üçüncü modlarda plastik nokta sayısı 26, 47 ve 116'dır. Ayrıca birinci, ikinci ve üçüncü modlarda maksimum yatay yer değiştirme miktarı sırasıyla 72, 97 ve 227 mm'dir.

Numerical Analysis of the Distribution of Plastic Points in the Earth Dams Concerning the Water Level, Berm, and Displacement

Failure of earth dams under seismic conditions may cause disastrous economic damage and loss of lives. Therefore, it is necessary to conduct a seismic safety evaluation and numerical analysis effectively. This paper presents the results of the distribution of plastic points of earth dams. The analysis of plastic points shows the plasticize variations in the body of the earth dam in pre-failure conditions. An inhomogeneous embankment with an upright clay core, which is 10 m high, was studied in three different water levels considering harmonic and static mode using the PLAXIS 2D software. The existence of water causes increasing the number of plastic points in the structure and increasing the amount of displacement. As a result, it changes the situation of plastic points and the location of the appearance of the maximum displacements. The number of plastic spots in first, second and third modes are in order 26, 47 and 116. Also, the amount of maximum horizontal displacement in first, second and third modes are in order 72, 97 and 227 mm.

___

  • Biondi, G., Cascone, E., Aliberti, D., & Rampello, S. (2021). Screening-level analyses for the evaluation of the seismic performance of a zoned earth dam. Engineering Geology, 280, 105954.
  • Chugh, A. K. (2013). Stability assessment of a circular earth dam. International Journal for Numerical and Analytical Methods in Geomechanics, 37(17), 2833-2859.
  • Costigliola, R. M., Mancuso, C., Pagano, L., & Silvestri, F. (2022). Prediction of permanent settlements of an upstream faced earth dam. Computers and Geotechnics, 144, 104594.
  • Fukuchi, T. (2018). New high-precision empirical methods for predicting the seepage discharges and free surface locations of earth dams validated by numerical analyses using the IFDM. Soils and Foundations, 58(2), 427-445.
  • Lacy, S. J., & Prevost, J. H. (1987). Nonlinear seismic response analysis of earth dams. Soil Dynamics and Earthquake Engineering, 6(1), 48-63.
  • Rashidi, M., & Haeri, S. M. (2017). Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 709-725.
  • Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P., & Bacconnet, C. (2018). Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data. Computers and Geotechnics, 101, 34-47.
  • Pelecanos, L., Kontoe, S., & Zdravković, L. (2016). Dam–reservoir interaction effects on the elastic dynamic response of concrete and earth dams. Soil Dynamics and Earthquake Engineering, 82, 138-141.
  • Sadrnezhad, Seyed Amiradin. (2005). Earth Dams and Their Numeric Analysis. In persian. Tehran: University of teacher training shahid Rajayi.
  • Salmasi, F., & Mansuri, B. (2014). Effect of homogeneous earth dam hydraulic conductivity ratio (K x/K y) with horizontal drain on seepage. Indian Geotechnical Journal, 44(3), 322-328.
  • Tan, X., Wang, X., Khoshnevisan, S., Hou, X., & Zha, F. (2017). Seepage analysis of earth dams considering spatial variability of hydraulic parameters. Engineering Geology, 228, 260-269.
  • Yegian, M. K., Marciano, E. A., & Ghahraman, V. G. (1991). Seismic risk analysis for earth dams. Journal of Geotechnical Engineering, 117(1), 18-34.
  • Yuan, S., & Zhong, H. (2016). Three dimensional analysis of unconfined seepage in earth dams by the weak form quadrature element method. Journal of Hydrology, 533, 403-411.
  • Zanjani, M. M., Soroush, A., & Khoshini, M. (2016). Two-dimensional numerical modeling of fault rupture propagation through earth dams under steady state seepage. Soil Dynamics and Earthquake Engineering, 88, 60-71.
  • Zhang, X., Wang, C. Y., Wong, H., Jiang, T., & Dong, J. (2022). Modeling dam deformation in the early stage of internal seepage erosion–Application to the Teton Dam, Idaho, before the 1976 incident. Journal of Hydrology, 605, 127378.