Systemic acquired resistance: Characterization of genes associated with plant defence response
Bitkiler patojen ve böcek saldırılanlarına karşı hem lokalize hem de sistemik olan savunma mekanizmalarını harekete geçirmek suretiyle tepki gösterirler. Bunlardan bu saldırılara karşı koymak amacıyla bitkide bir bütün olarak geliştirilen "Sistemik kazanılmış direnç" (SAR), infekte olmayan dokularda patojenlerle ilgili birçok genin uyarılmasına öncülük eden farklı sinyal akış ağlarını harekete geçirmek suretiyle bir koruma sağlar. SAR'ın moleküler mekanizmasını oluşturan patojeniteyle ilgili proteinler ile bunların ekspresyonları ve bu mekanizmada görev alan salisilik asit ve jasmonat gibi sinyal moleküllerinin detayları tam anlamıyla bilinememektedir. Ancak tepkiye bağlı sinyal akış ağlarında görev alan mutant bitkilerin karakterizasyonu, kompleks bir yapıya sahip olan SAR'ın moleküler mekanizmasını küçük bileşenlerine ayırarak daha kolay anlaşılabilmesine yardımcı olmaktadır. Bu makalede SAR ile ilgili genler ile bu tepki akışında görev alan mutantların belirlenmesi tartışılacaktır.
Sonradan sistemik olarak elde edilmiş direnç: Bitki savunma cevabı ile ilgili genlerin karakterizasyonu
Plants show their defence mechanism against pathogens and insects by induction of both localized and systemic responses. Of these, systemic acquired resistance (SAR) provides a protection on the uninfected tissues by activating different signaling pathways leading to induction of several pathogen related (PR) genes upon contact with invaders. Details of the molecular mechanisms of SAR, including pathogenesis-related proteins and their expression, and the signals including salicylic acid and jasmonates are still unclear. However, characterization of mutants involved in this response pathway helps to dissect this complex mechanism of SAR. In this paper, it will be discussed genes associated with SAR and the identification of mutants involved in this response pathway.
___
- Baker B, Zambryski P, Staskawicz B and Dinesh-Kumar SP. Signaling in plant-microbe interactions. Science. 276: 726-733, 1997.
- Bowling S A, Guo A, Cao H, Gordon AS, Klessig DF and Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 6: 1845-1857, 1994.
- Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW and Osborn RW. Antimicrobial peptides from plants. Crit Rev Plant Sci. 16: 297-323, 1997.
- Cao H, Bowling SA, Gordon AS and Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. 6: 1583-1592, 1.994.
- Clarke JD, Liu Y, Klessig DF and Dong X. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-l mutant. Plant Cell. 10:557-569, 1998.
- Delaney TP. Genetic dissection of acquired resistance to disease. Plant Physiol. 113: 5-12, 1997.
- Delaney TP, Friedrich L and Ryals JA. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci. USA. 92: 6602-6606, 1995.
- Delaney TP, Uknes S, Vernooloji B, Friedrich L and Weymann K. A central role of salicylic acid in plant disease resistance. Science. 266: 1247-1250, 1994.
- Dietrich RA, and Delaney TP, Uknes SJ, Ward J, Ryals JA and Dangi JL. Arabidopsis mutants simulating disease response. Cell. 77: 565-577, 1994.
- Farmer EE, and Ryan CA. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad. Sci. US A. 87: 7713-7716, 1990.
- Gâffney T, Friedrich L, Vernooji B, Negrotto D and Nye G. Requirements of salicylic acid for induction of systemic aquired resistance. Science. 261: 754-756, 1993.
- Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T and Katagiri F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34: 217-228, 2003.
- Glazebrook J, Rogers EE and Ausubel FM. Use of Arabidopsis for genetic dissection of plant defence responses. Anna Rev Genet. 31: 547-569, 1997.
- Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H and Ryals J. Bezothiadiazole, a novel class of inducers of systemic aquired resistance, activates genes expression and disease resistance in wheat. Plant Cell. 8: 629-643, 1996.
- Greenberg J, Guo A, Klessig D and Ausubel F. Programmed cell death in plants: a pathogen-triggered response activated coodinately with multiple defence function. Cell. 551-563, 1994.
- Howe GA, Lightner J, Brose J and Ryan CA. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defence against insect attack. Plant Cell. 8: 2067-2077, 1996.
- Kachroo P, Shanklin J, Shah J, Whittle EJ and Klessig DF. A fatty acid desaturase modulates the activation of defence signaling pathways in plants. Proc Natl Acad Sci. USA. 98: 9448-9453, 2001.
- Lawton K, Uknes S, Friedrich L, Gâffney T, Alexander D, Goodman R, Metraux JP, Kessmann H, Ahl-Goy P, Gut-Rella M, Ward E and Ryals J. The molecular biology of systemic acquired resistance. In: Mechanisms of Defence Response in Plants. Fritig B and Legrand M (Ed). Kluwer Academic, Dordrecht, The Netherlands. 410-420, 1993.
- Maleck K, Neuenschwander U, Cade RM, Dietrich RA, Dangl JL and Ryals JA. Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants. Genetics. 160: 1661-1671, 2002.
- Metraux JP, Ahl-Goy P, Staub P, Spleich J, Steinemann J, Ryals A and Ward E. Induced resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In: Advances in Molecular Genetics of Plant-microbe Interactions. Hennecks H and Verma DPS (Ed). Kluwer Academic, Dordrecht, The Netherlands. 432-439, 1991.
- Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM and Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 8:2309-2323,1996.
- Rairdan GJ and Delaney TP. Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics. 161: 803-811, 2002.
- Raskin I, Skubatz H, Tang W and Messuse JD. Salicyclic acid levels in thermogenic and non-thermogenic plants. Ann Bot. 66: 369-373, 1990.
- Shah J, Kachroo P, Nandi A and Klessig DF. A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1 -independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J. 25:563-574, 2001.
- Shah J, Tsui F and Klessig DF. Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact. 10: 69-78, 1997.
- Sticher L, Mauch-Mani B and Metraux JP. Systemic acquired resistance. Annu Rev Phytopathol. 35: 235- 270, 1997.
- Uknes S, Mauch-Mani B, Moyer M, Potter S and Williams S. Aquired resistance in Arabidopsis. Plant Cell. 4: 645- 656, 1992.
- Van Loon LC, Pierpoint WS, Boller T and Conejero V. Recommendations for naming plant pathogenesis-related proteins. Plant MolBiol Rep. 12: 245-264, 1994.
- Ward ER, Uknes SJ, Williams SC, Dincher SS and Wiederhold DL. Coordinate gene activity in response to agentsn that induce systemic aquired resistance. Plant Cell. 3: 1085-1094, 1991.
- White RF. Acetylsalicyclic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology. 99: 410- 412, 1979.
- Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J and- Klessig DF. Environmentally sensitive, SA-dependent defence responses in the cpr22 mutant of Arabidopsis. Plant J. 26: 447-459, 2001.