Phytochelatin biosynthesis and cadmium detoxification

İnsanın endüstriyel aktivitesi sonucunda çevredeki ağır metal kirlenmesi artmakta ve ağır metal toksisitesi önemli çevresel problemlere neden olmaktadır. Cd, Hg, Cr, Pb gibi gerekli olmayan ağır metaller çok düşük konsantrasyonlarda bile oldukça toksiktir. Bitkilerdeki ağır metal detoksifikasyonu ve tolerans moleküler anlamda, metal-bağlayan bileşiklerin üretimi, vakuollerde metal birikimi, membran yapısında değişiklik, stres metabolitlerinin sentezi gibi birçok farklı mekanizmalar tarafından yürütülür. Ancak son yıllarda araştırma konusu olarak en fazla ilgi duyulan mekanizma kelat oluflumudur. Bitkilerin aşırı Cd konsantrasyonuna gösterdiği tepkilerden biri Cd-bağlayan polipeptidler, ya da bir peptid ligand grubu ile kelat meydana getiren fitokelatinlerdir (PC). PC'ler yüksek bitkiler, algler ve bazı mantarlar tarafından üretilir, PC-Cd bileşikleri oluşturulur ve serbest metal konsantrasyonu azaltılarak özellikle Cd detoksifikasyonu ile Cd toleransında önemli rol oynarlar. Bu bileşikler glutationdan (GSH) ve ilişkili tiollerden PC sentaz aktivitesi ile meydana gelirler. PC biyosentezinin genetik ve moleküler temelinin anlaşılabilmesi, kirlenmiş çevrelerin fitoremediasyonunda kullanılacak bitkilerin geliştirilebilmesi açısından büyük önem taşımaktadır. Bu derleme, PC biyosentezi ve Cd detoksifikasyonu alanındaki bilgileri özetlemektedir.

Fitokelatin biyosentezi ve kadmiyum detoksifikasyonu

Heavy metal contamination in the environment is increasing due to human industrial activity and heavy metal causes major environmental problems. Ions like Cd, Hg, Cr, or Pb are non essential heavy metals which are potentially highly toxic even at very low concentrations. Heavy metal detoxification and tolerance in plants can be achieved by a number of different mechanisms on the molecular basis. Such as the production of metal-binding compounds, metal deposition in vacuoles, alterations of membrane structures, synthesis of stress metabolites; but the mechanism which has been studied most closely in recent years is chelation. One reaction of plants to excess Cd concentration is the formation of Cd-binding polypeptides, or the chelation by a family of peptide ligands, the phytochelatins (PCs). PCs are produced by higher plants, algae and some fungi in order to detoxify Cd by sequestration to form PC-Cd complexes which play a pivotal role in heavy metal, primarily Cd tolerance by decreasing their free concentrations. PCs are derived from glutathione (GSH) and related thiols by the action of PC synthase. Understanding the genetic and molecular basis of PC biosynthesis mechanism is an important goal in developing plants for the phytoremediation of contaminated environments. This review summarizes present knowledge in the field of PC biosynthesis and Cd detoxification .

___

  • Abrahamson SL, Speiser DM and Ow DW. A gel electrophoresis assay for phytochelatins. Anal Biochem. 200: 239-243, 1992.
  • Bayçu G. Cadmium tolerance and cadmium-binding polypeptides in Ailanthus altissima. In: P rogress in Botanical Research. Tsekos I and Moustakas M (Eds). Kluwer Academic Publishers, London. 1998.
  • Chardonnens AN, Tenbookum WM, Kuijper LDJ, Verkleij JAC and Ernst WHO. Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiol Plant. 104: 75-80, 1998.
  • Chen J, Zhou J and Goldsbrough PB. Characterisation of phytochelatin synthase from tomato. Physiol Plantarum. 101 : 165-172, 1997.
  • Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212: 475-486, 2001.
  • Clemens S, Kim EJ, Neumann D and Schroeder JI. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18: 3325-3333, 1999.
  • Cobbett CS, May MJ, Howden R and Rolls B. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in g-glutamylcysteine synthetase. Plant J. 16: 73-78, 1998.
  • Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol. 3: 211-216, 2000.
  • Cobbett CS. Heavy metal detoxification in plants: phytochelatin biosynthesis and function. IUBMB Life. 51: 183-188, 2001.
  • De Knecht J, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC and Ernst WHO. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol. 104: 255-261, 1994.
  • Ernst WHO, Schat H and Verkleij JAC. Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends in Plants. 4:45-51, 1990.
  • Gekeler W, Grill E, Winnacker EL and Zenk MH. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch. 44: 361-369, 1989.
  • Grill E, Winnacker EL and Zenk MH. Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science. 230: 674-676, 1985.
  • Grill E, Winnacker EL and Zenk MH. Occurence of heavy metal binding phytochelatins in plants growing in a mining refuse area. Experientia. 44: 539-540, 1988.
  • Grill E, Loffler S, Winnacker EL and Zenk MH. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). P roc Natl Acad Sci USA. 86: 6838-6842, 1989.
  • Grill E, Loffler S, Winnacker EL and Zenk MH. Phytochelatins. In: Methods in Enzymology. Metallobiochemistry, Part B Metallothionein and Related Molecules. Riordan JF and Vallee BL (Eds). Academic Press, San Diego. 205: 333-341, 1991.
  • Gupta SC and Goldsbrough PB. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 97:306-312, 1991.
  • Gussarsson M, Asp H, Adalsteinsson S and Jensen P. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO). J Exp Botany. 47: 211-215, 1996.
  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB and Cobbett CS. Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell. 11: 1153-1164, 1999.
  • Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Botany. 53: 1-11, 2002.
  • Howden R, Goldsbrough PB, Andersen CR and Cobbett CS. Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107: 1059-1066, 1995.
  • Hu S, Lau KWK and Wu M. Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci. 161: 987-996, 2001.
  • Inouhe M, Ninomiya S, Tohoyama H, Joho M and Murayama T. Different characteristics of roots in the cadmium-tolerance Cd-binding complex formation between mono - and dicotyledonous plants. J Plant Res. 107:201-207. Plant Physiol. 123: 1029-1036, 1994.
  • Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H and Joho M. Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol. 123: 1029-1036, 2000.
  • Klapheck S. Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plantarum. 74: 727- 732, 1988.
  • Klapheck S, Schlunz S and Bergmann L. Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol. 107: 515-521, 1995.
  • Larsson EH, Asp H and Bornman JF. Influence of prior Cd2+ exposure on the uptake of Cd2+ and other elements in the phytochelatin-deficient mutant, cad1-3, of Arabidopsis thaliana. J Exp Botany. 53: 447-453, 2002.
  • Leita L, Contin M and Maggioni A. Distribution of cadmium and induced Cd-bindind proteins in roots, stems and leaves of Phaseolus vulgaris. Plant Science. 77:139-147, 1991.
  • Leopold I, Gunther D, Schmit J and Neumann D. Phytochelatins and heavy metal tolerance. Phytochemistry. 50:1323-1328, 1999.
  • Levitt J. Responses of Plants to Environmental Stresses. Vol. 1, Academic Press, New York. 1980.
  • Lombi FJ, Zhao, SJ, Dunham S and McGrath SP. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. 145: 11-20, 2000.
  • Manunza B, Deiana S, Pintore M, Solinas V and Gessa C. The complexes of cadmium with phytochelatins. A quantum mechanics study. http://antas.agraria.uniss.it/electronic_papers/eccc4 /phytoc/Cdp4a.pdb. 1997.
  • Margoshes M and Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 79: 4813-4814, 1957.
  • Meharg AA. Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ. 17:989-993, 1994.
  • Neumann G, Lichtenberger O, Günther D, Tschierch K and Nover L. Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta. 194: 360-367, 1994.
  • Nussbaum S, Schmutz D and Brunold C. Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol. 88:1407-1410, 1988.
  • Ortiz DF, Ruscitti T, McCue KF and Ow DW. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem. 270: 4721-4728, 1995.
  • Ow DW. Heavy metal tolerance genes:prospective tools for bioremediations. Res Concerv Recycl. 18:135-149,1996.
  • Page AL, Bingham FT and Chang AC. Cadmium. In: Effect of Heavy Metal Pollution on Plants. Lepp NW (Ed). Applied Science Publishers, London. 1981.
  • Piechalak A, Tomaszewska B, Baralkiewicz D and Malecka A. Accumulation and detoxification of lead ions in legumes. Phytochemistry. in press.
  • Raskin I, Smith RD and Salt DE. Phytoremediation of metals: using plants to remove pollutants from environment. Curr Opin Biotechnol. 8:221-226, 1997.
  • Rauser WE. Phytochelatins. Ann Rev Biochem. 59: 61-86, 1990.
  • Rauser WE. Cadmium-binding peptides from plants. In: Methods in Enzymology. Metallobiochemistry, Part B Metallothionein and Related Molecules. Riordan JF and Vallee BL (Eds). Academic Press, San Diego. 205: 319-333, 1991.
  • Rauser WE. Phytochelatins and related peptides. Plant Physiol. 109: 1141-1149, 1995.
  • Rauser WE. Structure and function of metal chelators produced by plants; the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys. 31: 19-48, 1999.
  • Rennenberg H and Will B. Phytochelatin production and cadmium accumulation in transgenic poplar (Populus tremula x Populus alba). In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Brunold C et al. (Eds). Paul Haupt, Bern. 393-398, 2000.
  • Robinson NJ. Metal-binding polypeptides in plants. In: Heavy Metal Tolerance in Plants, Evolutionary Aspects. Shaw AJ (Ed). CRC Press, Boca Raton. 195-214, 1990.
  • Salt DE, Prince RC, Pickering IJ and Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109: 1427-1433, 1995.
  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD and Raskin I. Metal accumulation in aquacultured seedlings of Indian mustard. Environ Sci Technol. 31: 1631-1644, 1997.
  • Salt DE, Smith RD and Raskin I. Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol. 49: 643-668, 1998.
  • Sanità di Toppi L and Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot. 41: 105-130, 1999.
  • Satofuka H, Fukui T, Takagi M, Atomi H and Imanaka T. Metal-binding properties of phytochelatin-related peptides. J Inorg Biochem. 86: 595-602, 2001.
  • Speiser DM, Abrahamson SL, Banuelos G and Ow DW. Brassica juncea produces a phytochelatin-cadmium- sulfide complex. Plant Physiol. 99: 817-821, 1992.
  • Steffens JC. The heavy- metal binding peptides of plants. Ann. Rev Plant Physiol Plant Mol Biol. 41: 553-575, 1990.
  • Steffens SJ and Bagchi D. Oxidative mechanisms in the toxicity of metal ions. F ree Radic Biol Med. 18: 321-336, 1995.
  • Stroinski A and Zielezinska M. Cadmium and oxidative stress influence on phytochelatin synthase activity in potato tuber. Acta Physiol Plant. 23:157-160, 2001.
  • Takagi M, Satofuka H, Amano S, Mizuno H, Eguchi Y, Kazumasa H, Kazuhisa M, Fukui K and Imanaka T. Cellular toxicity of cadmium ions and their detoxification by heavy metal spesific plant peptides, phytochelatins, expressed in mammalian cells. J Biochem. 131: 233-239, 2002.
  • Tomsett AB and Thurman DA. Molecular biology of metal tolerances in plants. Plant Cell Environ. 11: 313-394, 1988.
  • Tukendorf A and Rauser WE. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science. 70: 155-166, 1990.
  • Vatamaniuk OK, Mari S, Lu YP and Rea PA. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. P roc Natl Acad Sci USA. 96: 7110-7115, 1999.
  • Vatamaniuk OK, Mari S, Lu YP and Rea PA. Mechanism of heavy metal ion activation of phytochelatin synthase. J Biol Chem. 275: 31451-31459, 2000.
  • Vögeli-Lange R and Wagner GJ. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92: 1086-1093, 1990.
  • Wagner GJ. Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron. 51: 173-212, 1993.
  • Zenk MH. Heavy metal detoxification in higher plants-a review. Gene. 179:21-30, 1996.
  • Zhu YL, Pilon-Smits EAH, Jouanin L and Terry N. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73-79, 1999.