Molecular farming in plants: An approach of agricultural biotechnology

Moleküler tarım, ilaç veya endüstri açısından değerli geleneksel olarak kullanılan proteinlerin veya diğer metabolitlerin üretimi olarak tanımlanır. Bitkiler memeli toksinleri ve patojenleri içermeyen çok çeşitli proteinleri sentez edebilir. Bitkiler düşük fiyata mal olan ve sınırlı olanaklara gerek duyan fazla miktarda biyomas üretebilir. Bitkiler çok uzun süredir tıbbi bileşenlerin kaynağı olarak kullanıldığından, moleküler tarım, tıbbi kullanımları moleküler düzeyde anlaşılmış olan plazma proteinleri, enzimler, büyüme faktörleri, aşılar ve rekombinant antikorlar gibi moleküler ilaçlar için yeni kaynaklardır. Biyo-tanm, enfeksiyon hastalıklar için gerekli aşılar, kanser ve kalp hastalıkları için kullanılan teröpatik proteinleri içeren bitkisel ilaçların daha bol ve daha ucuza elde edilmesi için umut vericidir. "Bitki yapımı farmasotikler" (PMPS) genetik mühendisliği ile bitkilerden spesifik bileşikler, genellikle hasat sonrası ekstre edilip saflaştırılan proteinlerin üretilmesi için kullanılmaktadır. Burada da kullanıldığı gibi moleküler tarım ve PMP doğal meydana gelen bitkisel ürünleri veya besleyici değeri arttırılmış besinleri içermemektedir.

Bitkilerde moleküler tarım: Tarımsal biyoteknolojiye yaklaşım

Molecular farming is defined as the production of proteins or other metabolites valuable to medicine or industry in plants traditionally used.in an agricultural setting. Crop plants can synthesize a wide variety of proteins that are free of mammalian toxins and pathogens. Crop plants produce large amounts of biomass at low cost and require limited facilities. Since plants have long been used as a source of medicinal compounds, molecular farming represents a novel source of molecular medicines, such as plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies, whose medical applications are understood at a molecular level. Bio-pharming promises more plentiful and cheaper supplies of pharmaceutical drugs, including vaccines for infectious diseases and therapeutic proteins for treatment of such things as cancer and heart disease. "Plant-made pharmaceuticals" (PMPs) are produced by genetically engineering plants to produce specific compounds, generally proteins, which are extracted and purified after harvest. As used here, the terms molecular farming and PMP do not include naturally occurring plant products or nutritionally enhanced foods.

___

  • Anzai H, Takaiwa F and Katsumata K. Production of human lactoferrin in transgenic plants. Elsevier Science B.V. 265-271, 2000.
  • Artsaenko O, Kettig B, Fiedler U, Conrad U. and Düring K. Potato tubers as a biofactory for recombinant antibodies. Mol. Breeding. 4: 313-319, 1998.
  • Barta A. The expression of nopaline synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol. Biol. 6: 347-357, 1986.
  • During K. Wound-inducible expression and secretion of T4 lysozyme and monoclonal antibodies in Nicotiana tabacum. Ph. D Thesis. Mathematisch- Naturwissenschaftlichen Fakultat der Universität zu Köln, 1988.
  • Freese B. Manufacturing drugs and chemical crops: Biopharming poses new threats to consumers, farmers, food companies and the environment. Available from GE Food Alert, www.gefoodalert.org, 2002.
  • Hiatt A, Cafferkey R and Bowdish K. Production of antibodies in transgenic plants, Nature. 342 (6245): 76- 78, 1989.
  • Hood EE, Kusnadi A, Nikolov Z, Howard JA. Molecular farming of industrial proteins from transgenic maize. In: Chemicals via higher plant bioengineering. Kluwer/Plenum. Shahidi F, Kolodziejczyk P, Whitaker JR, Munguia AL, Fuller G, New York, 127–147, 1999.
  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li CP and Howard JA. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3: 291–306, 1997.
  • Hood EE. From green plants to industrial enzymes. Enzyme Microbial Technol. 30: 279–283, 2002a.
  • Hood EE, Woodard SL and Horn ME. Monoclonal antibody manufacturing in transgenic plants - myths and realities. Curr. Opin. Biotechnol. 13: 630–635, 2002b.
  • Horn ME, Woodard SL and Howard JA. Plant molecular farming: systems and products. Plant Cell Rep. 22: 711–720, 2004.
  • Kusnadi AR, Hood EE, Witcher DR, Howard JA and Nikolov ZL. Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog. 14: 149–155, 1998.
  • Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA and Streatfield SJ. A corn-based delivery system for animal vaccines: an oral transmissable gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine (in press), 2004.
  • Ma JK-C, Drake PMW and Christou P. The production of recombinant pharmaceutical proteins in plants. Genetics. 4: 794-805, 2003.
  • Schillberg S, Fischer R and Emans N. Molecular farming of antibodies in plants. Naturwissenschften. 90: 145-155, 2003.
  • Seon J-H, Szarka JS and Moloney MM. A unique strategy for recovering recombinant proteins from molecular farming: affinity capture on engineered oilbodies. J. Plant Biotechnology. 4 (3): 95-101, 2002.
  • Stahl R, Horvath H, Van Fleet J, Voetz M, Von Wettstein D and Wolf N. T-DNA integration into the barley genome from single and double cassette vectors. Proc. Natl. Acad. Sci. 99 (4): 2146-2151, 2002.
  • Stöger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P and Fischer R. Cereal crops as viable production and storage systems for pharmaceutical scFV antibodies. Plant Mol.Biol. 42: 583-590, 2000.
  • Suslow TV, Thomas BR and Bradford KJ. Biotechnology provides new tools for planting. Oakland: University of California Division of Agriculture and Natural Resources, Publication 8043, 2002.
  • Thomas BR, Van Deynze A and Bradford KJ. Production of Therapeutic proteins in plants. Agricultural Biotechnology in California Series, Publication 8078, 2002.
  • Wandelt CI, Khan MR, Craig S, Schroeder HE, Spencer D anf Higgins TJ. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. The Plant Journal. 2: 181, 1992.
  • Xue GP, Patel M, Johnson JC and Smith DJ. Selectable marker-free transgenic barley producing a high-level of cellulase (1,4-ß-glucanase) in developing grains. Plant Cell Rep. 21: 1088-1094, 2003.
  • Zhong G-Y, Peterson D, Delaney DE, Bailey M, Witcher DR, Register JC III, Bond D, Li C-P, Marshall L, Kulisek E, Ritland D, Meyer T, Hood EE and Howard JA. Commercial production of aprotinin in transgenic maize seeds. Mol Breed. 5: 345–356, 1999.