Peganum harmala ve Achillea millefolium Uçucu Yağlarının ve Kombinasyonlarının Leishmania infantum promastigotes'e Karşı Antileishmanial Aktivitelerinin Değerlendirilmesi

Tıbbi bitkiler ve türevleri paraziter hastalıkların tedavisinde güvenli ajanlar olarak kullanılmaktadır. Bu ön çalışma, Peganum harmala uçucu yağı (PHEO), Achillea millefolium uçucu yağı (AMEO) ve bunların kombinasyonlarının Leishmania infantum (L. infantum) promastigotlarına karşı antileishmanial aktivitelerini araştırmaktadır. Standart bir L. infantum promastigot suşu, 96 kuyulu bir Novy-MacNeal-Nicolle (NNN) kültür ortamında yetiştirildi ve 10, 100, 500 ve 1000 mg/mL konsantrasyonlarda ve 24 saat, 48 saat ve 72 saat aralık sürelerinde glucantime, PHEO, AMEO, ikisinin eşit oranında ve %80 PHEO+%20 AMEO'nun antileishmanial aktiviteleri araştırıldı. Sonuçlar, en yüksek inhibisyonun %50 PHEO + AMEO'da gözlemlendiğini ve en düşük inhibisyonun kontrol grubunda görüldüğünü gösterdi. Artan zaman ve artan konsantrasyon, verimliliklerini önemli ölçüde artırdı. Analizler, zaman ve ajanlar arasında önemli bir etkileşim olduğunu gösterdi [F (10, 360)=7.84, P=0.000]. Ajanlar, artan süre ile daha iyi etkiler gösterdi. Özetle, PHEO ve AMEO'nun eşit kombinasyonu, antileishmanial güvenli bir yapı olarak potansiyelini göstermiştir ve gelecekteki çalışmalar için dikkate alınmalıdır.

Evaluation of Antileishmanial Activities of a Peganum Harmala and Achillea Millefolium Essential oils and their combinations against Leishmania Infantum Promastigotes

Medicinal plants and their derivations are used as safe agents for the treatment of parasitic diseases. This preliminary study investigates antileishmanial activities of Peganum harmala essential oil (PHEO), Achillea millefolium essential oils (AMEO) and their combinations against Leishmania infantum promastigotes. A standard strain of L. infantum promastigote was cultured in a 96-well Novy-MacNeal-Nicolle media culture and antileishmanial activities of glucantime, PHEO, AMEO, an equal ratio of both and 80% PHEO+20%AMEO were investigated in concentrations of 10, 100, 500 and 1000 mg/mL and interval times of 24h, 48h and 72h. The results showed that greatest inhibition was observed in 50PHEO+ AMEO and lowest inhibition was seen in control group. The increased time and increased concentration significantly increased their efficiencies. The analyses showed a significant interaction between time and agents [F (10, 360)=7.84, P=0.000]. The agents showed better effects with increased time. In sum, an equal combination of PHEO and AMEO showed its potential as an antileishmanial safe structure and must be considered for future studies.

___

  • Acar, M. B., İbiş, E. K., Şimşek, A., Vural, C., Tez, C., & Özcan, S. (2020). Evaluation of essential oil compounds and biological effects on cervix cancer HeLa cell line. The EuroBiotech Journal, 4(1), 17-24.
  • Ali, S. I., Gopalakrishnan, B., & Venkatesalu, V. (2017). Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: a review. Phytotherapy Research, 31(8), 1140-1161.
  • Apostolico, I., Aliberti, L., Caputo, L., De Feo, V., Fratianni, F., Nazzaro, F., Nazzaro, F., Souza, L. F., & Khadhr, M. (2016). Chemical composition, antibacterial and phytotoxic activities of Peganum harmala seed essential oils from five different localities in Northern Africa. Molecules, 21(9), 1235.
  • Asadzadeh, R., Abbasi, N., & Bahmani, M. (2021). Extraction and Identification of Chemical Compounds of Peganum harmala L. Seed Essential Oil by HS-SPME and GC-MS Methods. Traditional and Integrative Medicine, 6(3), 229-235.
  • Asgarpanah, J., & Ramezanloo, F. (2012). Chemistry, pharmacology and medicinal properties of Peganum harmala L. African Journal of Pharmacy and Pharmacology, 6(22), 1573-1580.
  • Ayrom, F., Rasouli, S., & Shemshadi, B. (2021). In vitro antileishmanial activity of Achillea santolina essential oil against Leishmania infantum Promastigote by methylthiazole tetrazolium (MTT) and trypan blue colorimetric methods. Archives of Razi Institute, 76(3), 529.
  • Benedek, B., Geisz, N., Jäger, W., Thalhammer, T., & Kopp, B. (2006). Choleretic effects of yarrow (Achillea millefolium sl) in the isolated perfused rat liver. Phytomedicine, 13(9-10), 702-706.
  • Cabral, L. I., Pomel, S., Cojean, S., Amado, P. S., Loiseau, P. M., & Cristiano, M. L. (2020). Synthesis and antileishmanial activity of 1, 2, 4, 5-Tetraoxanes against Leishmania donovani. Molecules, 25(3), 465.
  • Daniel, P. S., Lourenco, E. L. B., Sete da Cruz, R. M., de Souza Goncalves, C. H., Marques Das Almas, L. R., Hoscheid, J., da Silva C., Jacomassi, E., Brum, L., & Alberton, O. (2020). Composition and antimicrobial activity of essential oil of yarrow ('Achillea millefolium'L.). Australian Journal of Crop Science, 14(3), 545-550.
  • de Paula, R. C., da Silva, S. M., Faria, K. F., Frézard, F., de Souza Moreira, C. P., Foubert, K., Dias Lopes, J. C., Campana, P. R. V., Rocha, M. P., Silva, A. F., Silva, C. G., Pieters, L., & Almeida, V. L. (2019). In vitro antileishmanial activity of leaf and stem extracts of seven Brazilian plant species. Journal of Ethnopharmacology, 232, 155-164.
  • De Queiroz, A. C., Dias, T. d. L. M. F., Da Matta, C. B. B., Cavalcante Silva, L. H. A., de Araújo-Júnior, J. X., Araújo, G. B. d., Prado Moura, F. D. B., & Alexandre-Moreira, M. S. (2014). Antileishmanial activity of medicinal plants used in endemic areas in northeastern Brazil. Evidence-Based Complementary and Alternative Medicine, 1-9.
  • Delgado-Altamirano, R., Monzote, L., Piñón-Tápanes, A., Vibrans, H., Rivero-Cruz, J. F., Ibarra-Alvarado, C., & Rojas-Molina, A. (2017). In vitro antileishmanial activity of Mexican medicinal plants. Heliyon, 3(9), e00394.
  • Di Giorgio, C., Delmas, F., Ollivier, E., Elias, R., Balansard, G., & Timon-David, P. (2004). In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Experimental Parasitology, 106(3-4), 67-74.
  • Evans, A. T., & Croft, S. L. (1987). Antileishmanial activity of harmaline and other tryptamine derivatives. Phytotherapy Research, 1(1), 25-27.
  • Gervazoni, L. F., Barcellos, G. B., Ferreira-Paes, T., & Almeida-Amaral, E. E. (2020). Use of natural products in leishmaniasis chemotherapy: an overview. Frontiers in Chemistry, 8, 1031.
  • Hajji, A., Bnejdi, F., Saadoun, M., Ben Salem, I., Nehdi, I., Sbihi, H., Alharthi, F. A., El Bok, S., & Boughalleb-M’Hamdi, N. (2020). High reserve in δ-Tocopherol of Peganum harmala seeds oil and antifungal activity of oil against ten plant pathogenic fungi. Molecules, 25(19), 4569.
  • Herrera, L., Llanes, A., Álvarez, J., Degracia, K., Restrepo, C. M., Rivera, R., Stephens, D. E., Dang, H. T., Larionov, O. V., Lleonart, R., & Fernandez, P. L. (2020). Antileishmanial activity of a new chloroquine analog in an animal model of Leishmania panamensis infection. International Journal for Parasitology: Drugs and Drug Resistance, 14, 56-61.
  • Khadhr, M., Bousta, D., El Mansouri, L., Boukhira, S., Lachkar, M., Jamoussi, B., & Boukhchina, S. (2017). HPLC and GC–MS analysis of Tunisian Peganum harmala seeds oil and evaluation of some biological activities. American Journal of Therapeutics, 24(6), e706-e712.
  • Lima, M. I. S., Arruda, V. O., Alves, E. V. C., de Azevedo, A. P. S., Monteiro, S. G., & Pereira, S. R. F. (2010). Genotoxic effects of the antileishmanial drug glucantime®. Archives of Toxicology, 84(3), 227-232.
  • McKenna, D. J., Towers, G. N., & Abbott, F. (1984). Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and β-carboline constituents of ayahuasca. Journal of Ethnopharmacology, 10(2), 195-223.
  • Mirzaie, M., Nosratabadi, S. J., Derakhshanfar, A., & Sharifi, I. (2007). Antileishmanial activity of Peganum harmala extract on the in vitro growth of Leishmania major promastigotes in comparison to a trivalent antimony drug. Veterinarski Arhiv, 77(4), 365-375.
  • mondiale de la Santé, O., & Organization, W. H. (2021). Global leishmaniasis surveillance: 2019–2020, a baseline for the 2030 roadmap–Surveillance mondiale de la leishmaniose: 2019-2020, une période de référence pour la feuille de route à l’horizon 2030. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 96(35), 401-419.
  • Rahimi-Moghaddam, P., Ebrahimi, S. A., Ourmazdi, H., Selseleh, M., Karjalian, M., Haj-Hassani, G., Alimohammadian, M. H., Mahmoudian, M., & Shafiei, M. (2011). In vitro and in vivo activities of Peganum harmala extract against Leishmania major. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 16(8), 1032.
  • Santos, A., Santin, A., Yamaguchi, M., Cortez, L., Ueda-Nakamura, T., Dias-Filho, B., & Nakamura, C. (2010). Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Annals of Tropical Medicine & Parasitology, 104(6), 475-483.
  • Shao, H., Huang, X., Zhang, Y., & Zhang, C. (2013). Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops. Molecules, 18(3), 2623-2634. Tavakoli, P., Shaddel, M., Yakhchali, M., Raoufi, N., Shamsi, H., & Dastgheib, M. (2020). Antileishmanial effects of propolis against Leishmania major in vitro and in vivo. Annals of Military and Health Sciences Research, 18(1), e100630.
  • Yang, S., Bai, M., Yang, J., Yuan, Y., Zhang, Y., Qin, J., Kuang, Y., Sampietro, D. A. (2020). Chemical composition and larvicidal activity of essential oils from Peganum harmala, Nepeta cataria and Phellodendron amurense against Aedes aegypti (Diptera: Culicidae). Saudi Pharmaceutical Journal, 28(5), 560-564.
  • Zheng, Z.-W., Li, J., Chen, H., He, J.-L., Chen, Q.-W., Zhang, J.-H., Zhou, Q., Chen, D.-L., & Chen, J.-P. (2020). Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasites & Vectors, 13(1), 1-14.