Klotho Proteini ve Tip 2 Diabetes Mellitus

Diabetes Mellitus (DM), birçok ülke tarafından epidemik bir hastalık olarak kabul edilmekte ve batı toplumlarında en önde gelen ölüm nedenlerinden biri olarak gösterilmektedir. Hastalığın gelişiminde altta yatan patofizyolojik mekanizmalar kompleks ve multifaktöriyeldir. DM sıklığı yaş ile artmakta ve bununla birlikte oksidatif stres, inflamasyon gibi olayların şiddeti de DM tanılı hastalarda artmaktadır. Yaşlanma mekanizmaları üzerinde yapılan araştırmalar sonucu yeni bir anti-aging protein olarak tanımlanan klotho (KL) proteini glukoz homeostazı ve insulin salgılanmasında önemli fonksiyonlara sahiptir. Bu derleme çalışmasında, 2002-2020 yılları arasında PubMed'de taranan dergilerde yayınlanan makalelerdeki bilgiler derlenerek KL proteini ile DM arasındaki ilişki anlatılmıştır. Sonuç olarak, KL düzeylerindeki azalma tip 2 DM ve buna bağlı olarak gelişen nefropati ve vasküler hastalıklarda önemli rol oynar.

Klotho Protein and Type 2 Diabetes Mellitus

Diabetes mellitus (DM) is considered an epidemic disease by many countries and shown as one of the leading causes of death in western societies. In the development of the disease, the underlying pathophysiological mechanisms are complex and multifactorial. The frequency of DM increases with age, and the severity of events such as oxidative stress and inflammation increases in patients diagnosed with DM. The Klotho (KL) protein, defined as a new anti-aging protein as a result of the studies on aging mechanisms and it has an important functions on glucose homeostasis and insulin secretion. In this review study, the relationship between KL protein and DM is explained by compiling the information in the articles published in PubMed indexed journals between 2002-2020. In conclusion, a decrease in KL levels plays a role in type 2 DM and the development of nephropathy and vascular diseases caused by type 2 DM.

___

  • American Diabetes Association. (2012). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 35(Suppl 1), 64-S71.
  • Arking, D. E., Krebsova, A., Macek, M., Macek, M., Arking, A., Mian, I. S., Fried, L., Hamosh, A., Dey, S., McIntosh, I., & Dietz, H. C. (2002). Association of human aging with a functional variant of klotho. Proceedings of the National Academy of Sciences, 99, 856-861.
  • Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(4), 174–188.
  • Buchanan, S., Combet, E., Stenvinkel, P., & Shiels, P. G. (2020). Klotho, Aging, and the Failing Kidney. Frontiers in Endocrinology, 11, 560.
  • Buendía, P., Ramírez, R., Aljama, P., & Carracedo, J. (2016). Klotho Prevents Translocation of NFκB. Vitamins & Hormones, 101, 119–150.
  • Buendía, P., Carracedo, J., Soriano, S., Madueño, J.A., Ortiz, A., Martín-Malo, A., Aljama, P., & Ramírez, R. (2015). Klotho prevents NFB translocation and protects endothelial cell from senescence induced by uremia. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70, 1198–1209.
  • Butkowski, E. G., & Jelinek, H. F. (2017). Hyperglycaemia, oxidative stress and inflammation markers. Redox Report, 22, 257–264.
  • Cararo-Lopes, M. M., Mazucanti, C. H. Y., Scavone, C., Kawamoto, E. M., & Berwick, D. C. (2017). The relevance of α-KLOTHO to the central nervous system: some key questions. Ageing Research Reviews, 36, 137–148.
  • Degirolamo, C., Sabbà, C., & Moschetta, A. (2016). Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nature Reviews Drug Discovery, 15(1), 51-69.
  • Dokumacioglu, E., Iskender, H., Sen, T.M., Ince, I., Dokumacioglu, A., Kanbay, Y., Erbas, E., & Saral, S. (2018). The Effects of Hesperidin and Quercetin on Serum Tumor Necrosis Factor-Alpha and Interleukin-6 Levels in Streptozotocin-induced Diabetes Model. Pharmacognosy Magazine, 54, 167–173.
  • Dokumacioglu, E., Iskender, H., & Musmul, A. (2019). Effect of hesperidin treatment on α-Klotho/FGF-23 pathway in rats with experimentally-induced diabetes. Biomedicine & Pharmacotherapy, 109, 1206–1210.
  • Domingueti, C. P., Dusse, L. M., Carvalho, M. D, de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and its Complications, 30(4), 738-45.
  • Guo, Y., Zhuang, X., Huang, Z., Zou, J., Yang, D., Hu, X., Du, Z., Wang, L., & Liao, X. (2018). Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(1), 238-251.
  • Hui, H., Zhai, Y., Ao, L., Cleveland Jr, J. C., Liu, H., Fullerton, D. A., & Meng, X. (2017). Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice. Oncotarget, 8, 15663-15676.
  • Hasannejad, M., Samsamshariat, S.Z., Esmaili, A., & Jahanian-Najafabadi, A. (2019). Klotho induces insulin resistance possibly through interference with GLUT4 translocation and activation of Akt, GSK3β, and PFKfβ3 in 3T3-L1 adipocyte cells. Research in Pharmaceutical Sciences, 14(4), 369–377.
  • Harani, H., Otmane, A., Makrelouf, M., Ouadahi, N., Abdi, A., Berrah, A., Zenati, A., Alamir, B., & Koceir, E.A. (2012). The relationship between inflammation, oxidative stress and metabolic risc factors in type 2 diabetic patients. Annales de Biologie Clinique (Paris), 70, 669–77.
  • Hojs, R., Ekart, R., Bevc, S., & Hojs, N. (2016). Markers of inflammation and oxidative stress in the development and progression of renal disease in diabetic patients. Nephron, 133, 159–62.
  • Hu, M. C., Kuro-o, M., & Moe, O. W. (2013). Klotho and Chronic kidney disease. Contributions to Nephrology, 180, 47-63.
  • Hu, M. C., & Moe, O. W. (2012). Klotho as a potential biomarker and therapy for acute kidney injury. Nature Reviews Nephrology, 8, 423-429.
  • Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656–662.
  • Ito, S., Kinoshita, S., Shiraishi, N., Nakagawa, S., Sekine, S., Fujimori, T., & Nabeshima, Y. I. (2000). Molecular cloning and expression analyses of mouse β-Klotho, which encodes a novel Klotho family protein. Mechanisms of Development, 98, 115–119.
  • Ito, S., Fujimori, T., Furuya, A., Satoh, J., & Nabeshima, Y. (2005). Impaired negative feedback suppression of bile acid synthesis in mice lacking β-Klotho. The Journal of Clinical Investigation, 115, 2202–2208.
  • Jia, G., Aroor, A. R., Jia, C., & Sowers, J. R. (2019). Endothelial cell senescence in aging-related vascular dysfunction. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865, 1802–1809.
  • Kahn, S.E. (2003). The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia, 46, 3–19.
  • Kazemi, F. T., Ahmadi, R., Akbari, T., Moradi, N., Fadaei, R., Kazemi, F. M., & Fallah, S. (2021). Klotho, FOXO1 and cytokines associations in patients with coronary artery disease. Cytokine, 141, 155443.
  • Kim, S. S., Song, S. H., Kim, I. J., Lee, E. Y., Lee, S. M., Chung, C. H., Kwak, I. S., Lee, E. K., & Kim, Y. K. (2016). Decreased plasmaα-Klothopredict progression of nephropathy with type 2 diabetic patients. Journal of Diabetes and its Complications, 30, 887–892.
  • Kuro-o, M. (2008). Endocrine FGFs and Klothos: emerging concepts. Trends in Endocrinology & Metabolism, 19, 239–245.
  • Kuro-o, M. (2008). Klotho as a regulator of oxidative stress and senescence. Biological Chemistry, 389, 233-241.
  • Kuro-o, M. (2010). Klotho. Pflugers Arch, 459, 333–343.
  • Kuro-o, M. (2018). Molecular mechanisms underlying accelerated aging by defects in the FGF23-Klotho system. International Journal of Nephrology, 2018, 1–6.
  • Kuro-o, M. (2019). The Klotho proteins in health and disease. Nature Reviews Nephrology, 5, 27–44.
  • Kurosu, H., & Kuro-O, M. (2009). The Klotho gene family as a regulator of endocrine fibroblast growth factors. Molecular and Cellular Endocrinology, 299, 72–78.
  • León-Pedroza, J. I., González-Tapia, L. A., del Olmo-Gil, E., Castellanos-Rodríguez, D., Escobedo, G., & González-Chávez, A. (2003). Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes, 52, 1799–805.
  • Lim, S. W., Jin, L., Luo, K., Jin, J., Shin, Y. J., Hong, S. Y., & Yang, C. W. (2019). Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Aging (Albany NY), 11(15), 5548–5569.
  • Liu, J. J., Liu, S., Morgenthaler, N. G., Wong, M. D., Tavintharan, S., Sum, C. F., & Lim, S. C. (2014). Association of plasma soluble alphα-klotho with pro-endothelin-1 in patients with type 2 diabetes. Atherosclerosis, 233, 415-418.
  • Ma, Z., Li, J., Jiang, H., & Chu, Y. (2021). Expression of α-Klotho Is Downregulated and Associated with Oxidative Stress in the Lens in Streptozotocin-induced Diabetic Rats. Current Eye Research, 46(4), 482-489.
  • Maekawa, Y., Ishikawa, K., Yasuda, O., Oguro, R., Hanasaki, H., Kida, I., Takemura, Y., Ohishi, M., Katsuya, T., & Rakugi, H. (2009). Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine, 35, 341-346.
  • Maltese, G., & Karalliedde, J. (2012). The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease. International Journal of Hypertension, 2012, 1–5.
  • Martin-Nunez, E., Donate-Correa, J., Muros-de-Fuentes, M., Mora-Fernandez, C., Navarro-Gonzalez, J.F. (2014). Implications of Klotho in vascular health and disease. World Journal of Cardiology, 6, 1262-1269.
  • Marques-Vidal, P., Schmid, R., Bochud, M., Bastardot, F., von Känel, R., Paccaud, F., Glaus, J., Preisig, M., Waeber, G., & Vollenweider, P. (2012). Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. the CoLaus study. PLoS One, 7, e51768.
  • Marshall, S. M., & Flyvbjerg, A. (2006). Prevention and early detection of vascular complications of diabetes. BMJ, 333(7566), 475-80.
  • Maekawa, Y., Ishikawa, K., Yasuda, O., Oguro, R., Hanasaki, H., Kida, I., Takemura, Y., Ohishi, M., Katsuya, T., & Rakugi, H. (2009). Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine, 35, 341–46.
  • Matsumura, Y., Aizawa, H., Shiraki-Iida, T., Nagai, R., Kuro-o, M., & Nabeshima, Y. (1998). Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochemical and Biophysical Research Communications, 242, 626-630.
  • Moos, W. H., Faller, D. V., Glavas, I. P., Harpp, D. N., Kanara, I., Mavrakis, A. N., Pernokas, J., Pernokas, M., Pinkert, C. A., Powers, W. R., Sampani, K., Steliou, K., Vavvas, D. G., Zamboni, R. J., Kodukula, K., & Chen, X. (2020). Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. BioResearch Open Access, 9(1), 94-105.
  • Nie, F., Wu, D., Du, H., Yang, X., Yang, M., Pang, X., & Xu, Y. (2017). Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. Journal of Diabetes and its Complications, 31(3), 594-598.
  • Nishimura, T., Nakatake, Y., Konishi, M., & Itoh, N. (2000). Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1492, 203–206.
  • Oguntibeju, O. O. (2019). Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. International Journal of Physiology, Pathophysiology and Pharmacology, 11(3), 45–63.
  • Ohnishi, M., Kato, S., Akiyoshi, J., Atfi, A., & Razzaque, M. S. (2011). Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting Klotho functions. The FASEB Journal, 25, 2031–2039.
  • Olauson, H., Vervloet, M. G., Cozzolino, M., Massy, Z. A., Ureña, T. P., & Larsson, T. E. (2014). New insights into the FGF23-Klotho axis. Seminars in Nephrology, 34(6), 586-97. Olejnik, A., Franczak, A., Krzywonos-Zawadzka, A., KaBuhna-Oleksy, M., & Bil-Lula, I. (2018). The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BioMed Research International, 2018, 5171945.
  • Onishi, K., Miyake, M., Hori, S., Onishi, S., Iida, K., Morizawa, Y., Tatsumi, Y., Nakai, Y., Tanaka, N., & Fujimoto, K. (2020). γ-Klotho is correlated with resistance to docetaxel in castration-resistant prostate cancer. Oncology Letters, 19(3), 2306-2316.
  • Özdemir, İ., & Hocaoğlu, Ç. (2009). Type 2 diabetes mellitus and quality of life: A review. Göztepe Tıp Dergisi, 24(2), 73-78.
  • Razzaque, M. S. (2012). The role of Klotho in energy metabolism. Nature Reviews Endocrinology, 8, 579–587.
  • Rehman, K., & Akash, M. S. H. (2017). Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? Journal of Cellular Biochemistry, 118(11), 3577-3585.
  • Ribeiro, A. L., Mendes, F., Carias, E., Rato, F., Santos, N., Neves, P. L., & Silva, A. P. (2020). FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease. Journal of Diabetes and its Complications, 34(1), 107476.
  • Rubinek, T., & Modan-Moses, D. (2016). Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions. Vitamins & Hormones, 101, 85-118.
  • Semba, R. D., Cappola, A. R., Sun, K., Bandinelli, S., Dalal, M., Crasto, C., Guralnik, J.M., & Ferrucci, L. (2011). Plasma Klotho and mortality risk in older community-dwelling adults. J Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66, 794–800.
  • Silva, A. P., Mendes, F., Pereira, L., Fragoso, A., Gonçalves, R. B., Santos, N., Rato, F., & Neves, P. L. (2017). Klotho levels: association with insulin resistance and albumin-to-creatinine ratio in type 2 diabetic patients. International Urology and Nephrology, 49, 1809-1814.
  • Stubbs, J., Liu, S., & Quarles, L. D. (2007). Phosphorus Metabolism And Management In Chronic Kidney Disease: Role of Fibroblast Growth Factor 23 in Phosphate Homeostasis and Pathogenesis of Disordered Mineral Metabolism in Chronic Kidney Disease. Seminar in Dialysis, 20(4), 302–308.
  • Typiak, M., & Piwkowska, A. (2021). Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. International Journal of Molecular Sciences, 22, 956.
  • Tsalamandris, S., Antonopoulos, A. S., Oikonomou, E., Papamikroulis, G. A., Vogiatzi, G., Papaioannou, S., Deftereos, S., & Tousoulis, D. (2019). The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. European Cardiology Review, 14(1), 50–59.
  • Urakawa, Y., Yamazaki, T., Shimada, I. K., Hasegawa, H., Okawa, K., Fujita, T., Fukumoto, S., & Yamashita, T. (2006). Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature, 444, 770-774.
  • Utsugi, T., Ohno, T., Ohyama, Y., Uchiyama, T., Saito, Y., Matsumura, Y., Aizawa, H., Itoh, H., Kurabayashi, M., Kawazu, S., Tomono, S., Oka, Y., Suga, T., Kuro-o, M., Nabeshima, Y., & Nagai, R. (2000). Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism, 49(9), 1118-23.
  • Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311-321.
  • Xie, J., Cha, S. K., An, S. W., Kuro, O. M., Birnbaumer, L., & Huang, C. L. (2012). Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications, 3, 1238.
  • Yamamoto, M., Clark, J. D., Pastor, J. V., Gurnani, P., Nandi, A., Kurosu, H., Miyoshi, M., Ogawa, Y., Castrillon, D. H., Rosenblatt, K. P., & Kuro-o, M. (2005). Regulation of oxidative stress by the anti-aging hormone klotho. Journal of Biological Chemistry, 280(45), 38029-34.
  • Yamashita, T., Yoshioka, M., & Itoh, N. (2000). Identification of a Novel Fibroblast Growth Factor, FGF-23, Preferentially Expressed in the Ventrolateral Thalamic Nucleus of the Brain. Biochemical and Biophysical Research Communications, 277(2), 494–8.
  • Zhang, Y., Wang, L., Wu, Z., Yu, X., Du, X., & Li, X. (2017). The expressions of Klotho family genesin human ocular tissues and in anterior lens capsules of age-related cataract. Current Eye Research, 42, 871–875.
  • Zou, D., Wu, W., He, Y., Ma, S., & Gao, J. (2018). The role of klotho in chronic kidney disease. BMC Nephrology, 19, 285.