Cell-based Cytotoxicity Methods

Cell-based Cytotoxicity Methods

Cell-based cytotoxicity methods are an essential part of cancer research and drug discovery. Cancer is characterized by increasing in the cells proliferation and decreasing in cell death. Likewise, drugs interfere with many cellular functions that involve different cell death pathways. These changes in the physiology of the cells can be qualified with several available methods.  Many assays rely on numerous cell functions from metabolic activity and cellular Adenosine 5′-triphosphate (ATP), membrane integrity, DNA cleavage, caspase activity, protein content and mitochondria changes. Some assays are considered suitable for high throughput screening due to the rapid evaluation of many samples in a cost-effective way, in addition to low sample and reagent consumption. Selecting the right methods is critical to generating meaningful results. There are many molecular signaling pathways involved in cell deaths and every assay gives specific insight into the process of apoptosis in the cells. This helps in the data interpretation for a better understanding of specific cell death mechanisms for in vitro analysis. This review is given an overview of the most commonly used methods to assess cell death. 

___

  • 1. Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov. 2011;10:221–237.
  • 2. Méry B, Guy JB, Vallard A, et al. In vitro cell death determination for drug discovery: A landscape review of real issues. J Cell Death. 2017;10. doi:10.1177/1179670717691.
  • 3. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007;35(4):495-516. doi:10.1080/01926230701320337.
  • 4.Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–152.
  • 5.Vives-Bauza C, Yang L, Manfredi G. Assay of Mitochondrial ATP Synthesis in Animal Cells and Tissues. Methods Cell Biol. 2007;80:155-171. doi:10.1016/S0091-679X(06)80007-5.
  • 6. Ulukaya E, Ozdikicioglu F, Oral AY, Demirci M. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol Vitr. 2008;22(1):232-239. doi:10.1016/j.tiv.2007.08.006.
  • 7. Ziegler D V., Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell. 2015;14(1):1-7. doi:10.1111/acel.12287.
  • 8. Berridge M V., Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol Annu Rev. 2005;11(SUPPL.):127-152. doi:10.1016/S1387-2656(05)11004-7.
  • 9. van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-245. doi:10.1007/978-1-61779-080-5_20.
  • 10. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56(3):279-285. doi:10.1038/bjc.1987.190.
  • 11. Goodwin CJ, Holt SJ, Downes S, Marshall NJ. Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. J Immunol Methods. 1995;179(1):95-103. doi:10.1016/0022-1759(94)00277-4.
  • 12 Dunigan DD, Waters SB, Owen TC. Aqueous soluble tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity. Biotechniques. 1995;19(4):640-649.
  • 13.Jost LM, Kirkwood JM, Whiteside TL. Improved short- and long-term XTT-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells. J Immunol Methods. 1992;147(2):153-165. doi:10.1016/S0022-1759(12)80003-2.
  • 14. Peskin A V., Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta. 2000;293(1-2):157-166. doi:10.1016/S0009-8981(99)00246-6.
  • 15. Bommer M, Ward JM. Micromolar colorimetric detection of 2-hydroxy ketones with the water-soluble tetrazolium WST-1. Anal Biochem. 2016;493:8-10. doi:10.1016/j.ab.2015.09.012.
  • 16. Back SA, Khan R, Gan X, Rosenberg PA, Volpe JJ. A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. J Neurosci Methods. 1999;91(1-2):47-54. doi:10.1016/S0165-0270(99)00062-X.
  • 17. O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421-5426. doi:10.1046/j.1432-1327.2000.01606.x.
  • 18. Patel HD, Zaveri AD, Zaveri DN, Shah S, Solanki A. Comparison of the mtt and alamar blue assay for in vitro anti cancer activity by testing of various chalcone and thiosemicarbazone derivatives. Int J Pharma Bio Sci. 2013;4(2).
  • 19. Decker T, Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods. 1988;115(1):61-69. doi:10.1016/0022-1759(88)90310-9.
  • 20. Howell BF, McCune S, Schaffer R. Lactate-to-pyruvate or pyruvate-to-lactate assay for lactate dehydrogenase: A re-examination. Clin Chem. 1979;25(2):269-272. doi:10.1093/jac/dkr570.
  • 21. Chan FKM, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol. 2013;979:65-70. doi:10.1007/978-1-62703-290-2_7.
  • 22. Neri S, Mariani E, Meneghetti A, Cattini L, Facchini A. Calcein-Acetyoxymethyl Cytotoxicity Assay: Standardization of a Method Allowing Additional Analyses on Recovered Effector Cells and Supernatants. Clin Vaccine Immunol. 2001;8(6):1131-1135. doi:10.1128/CDLI.8.6.1131-1135.2001.
  • 23. Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1(3):1458-1461. doi:10.1038/nprot.2006.238.
  • 24. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified Annexin V/Propidium Iodide Apoptosis Assay For Accurate Assessment of Cell Death. J Vis Exp. 2011;(50). doi:10.3791/2597.
  • 25. Sawai H, Domae N. Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochem Biophys Res Commun. 2011;411(3):569-573. doi:10.1016/j.bbrc.2011.06.186.
  • 26. Lee PY, Costumbrado J, Hsu C-Y, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. 2012;(62):1-5. doi:10.3791/3923.
  • 27. Behl B, Klos M, Serr M, et al. An ELISA-based method for the quantification of incorporated BrdU as a measure of cell proliferation in vivo. J Neurosci Methods. 2006;158(1):37-49. doi:10.1016/j.jneumeth.2006.05.011.
  • 28. Darzynkiewicz Z, Galkowski D, Zhao H. Analysis of apoptosis by cytometry using TUNEL assay. Methods. 2008;44(3):250-254. doi:10.1016/j.ymeth.2007.11.008.
  • 29. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.
  • 30. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ Differ. 2007;14(1):44-55. doi:10.1038/sj.cdd.4402047.
  • 31. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–241.
  • 32 Fischer U, Jänicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell death Differ. 2003;66:1453–1458.
  • 33. Yi CH, Yuan J. The Jekyll and Hyde functions of caspases. Dev Cell. 2009;16:21–3
  • 34.Crawford ED, Wells JA. Caspase Substrates and Cellular Remodeling. Annu Rev Biochem. 2011;80(1):1055-1087. doi:10.1146/annurev-biochem-061809-121639.
  • 35. Liu J, Bhalgat M, Zhang C, Diwu Z, Hoyland B, Klaubert DH. Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg Med Chem Lett. 1999;9(22):3231-3236. doi:S0960894X99005661 [pii].
  • 36. Gurtu V, Kain SR, Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem. 1997;251(1):98-102. doi:10.1006/abio.1997.2220.
  • 37. Poreba M, Strózyk A, Salvesen GS, Drag M. Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol. 2013;5(8). doi:10.1101/cshperspect.a008680.
  • 38.Nestal De Moraes G, Carvalho É, Maia RC, Sternberg C. Immunodetection of caspase-3 by Western blot using glutaraldehyde. Anal Biochem. 2011;415(2):203-205. doi:10.1016/j.ab.2011.04.032.
  • 39. Saunders PA, Cooper JA, Roodell MM, et al. Quantification of active caspase 3 in apoptotic cells. Anal Biochem. 2000;284(1):114-124. doi:10.1006/abio.2000.4690.
  • 40. Sabine VS, Faratian D, Kirkegaard-Clausen T, Bartlett JMS. Validation of activated caspase-3 antibody staining as a marker of apoptosis in breast cancer. Histopathology. 2012;60(2):369-371. doi:10.1111/j.1365-2559.2011.04024.x.
  • 41.Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899-1911. doi:10.1101/gad.13.15.1899.
  • 42. Hardwick JM, Chen Y bei, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol. 2012;22(6):318-328. doi:10.1016/j.tcb.2012.03.005.
  • 43. Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351(1-2):41-58. doi:10.1007/s11010-010-0709-x.
  • 44. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107-1112. doi:10.1093/jnci/82.13.1107.
  • 45. Keepers YP, Pizao PE, Peters GJ, van Ark-Otte J, Winograd B, Pinedo HM. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer Clin Oncol. 1991;27(7):897-900. doi:10.1016/0277-5379(91)90142-Z.
  • 46.Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297-312. doi:10.1042/BJ20110162.
  • 47. Sakamuru S, Attene-Ramos MS, Xia M. Mitochondrial membrane potential assay. Methods Mol Biol. 2016;1473:17-22. doi:10.1007/978-1-4939-6346-1_2.
  • 48.Kuznetsov A V., Margreiter R, Amberger A, Saks V, Grimm M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta - Mol Cell Res. 2011;1813(6):1144-1152.doi:10.1016/j.bbamcr.2011.03.002.
  • 49. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci. 2002;99(3):1259-1263. doi:10.1073/pnas.241655498.
  • 50. Campos CBL, Paim BA, Cosso RG, Castilho RF, Rottenberg H, Vercesi AE. Method for monitoring of mitochondrial cytochrome c release during cell death: Immunodetection of cytochrome c by flow cytometry after selective permeabilization of the plasma membrane. Cytom Part A. 2006;69(6):515-523. doi:10.1002/cyto.a.20273.
  • 51. Boulares a H, Yakovlev AG, Ivanova V, et al. Role of Poly ( ADP-ribose ) Polymerase ( PARP ) Cleavage in Apoptosis. J Biol Chem. 1999;274(33):22932-22940. doi:10.1074/jbc.274.33.22932.
  • 52. Hollville E, Martin SJ. Measuring apoptosis by microscopy and flow cytometry. Curr Protoc Immunol. 2016;2016:14.38.1-14.38.24. doi:10.1002/0471142735.im1438s112.
  • 53.Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2015;111(November):A3.B. 1-A3.B.3. doi:10.1002/0471142735.ima03bs111.
  • 54. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/ cytotoxicity. Nat Protoc. 2008;3(7):1125-1131. doi:10.1038/nprot.2008.75.
  • 55. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315-2319. doi:10.1038/nprot.2006.339.