Levrekten (Dicentrarchus labrax) İzole Edilen Lactococcus lactis'in Antibakteriyel Aktivitesi ve in vitro Probiyotik Özellikleri

Bu çalışmanın amacı, Lactococcus lactis’in seçilmiş patojenlere karşı antibakteriyel etkisini taramak ve probiyotik özelliklerini laboratuvar ortamında karakterize etmektir. Çalışmada, L. lactis’in tam-hücre ürünü ve hücresiz süpernatantı test edilmiştir ve tam hücreli bileşiğin antibakteriyel etkisinin, hücresiz süpernatantınkinden daha fazla olduğu tespit edilmiştir. L. lactis en büyük inhibitör etkiyi test edilen bakteriler arasında, aynı ortamdan izole edilen A. veronii’ye karşı göstermiştir. L. lactis, 4-37 °C, %1-4 NaCl, %0,3 oxgall ve pH 2-3'te gözlemlenebilir büyüme sergilemiştir. Hücreler %89,3 oranında hidrofobik özellik göstermiştir. API-ZYM sisteminde test edilen 19 enzimden sadece 7'sinin L. lactis için belirgin olduğu tespit edilmiştir. L. lactis’in, streptomisin ve sülfadiazin'e dirençli, su ürünleri yetiştiriciliğinde yaygın olarak kullanılan diğer 7 antibiyotiğe karşı ise duyarlı olduğu belirlenmiştir. İzolat γ-hemolitiktir. Sonuçlar, L. lactis’in geniş bir sıcaklık ve tuzluluk aralığında hayatta kalabilme, asidik ve safra tuzlu ortamlarda gelişebilme ve sindirimi destekleyebilen enzimler üretebilme gibi probiyotik özellikler sergilediğini göstermiştir. Bu bulgulara dayanarak L. lactis’in su ürünleri yetiştiriciliğinde probiyotik takviyesi olarak kullanılma potansiyeli olduğu öngörülmektedir.

Antibacterial Activity and In vitro Probiotic Properties of Lactococcus lactis Isolated from Sea Bass (Dicentrarchus labrax)

This study aimed to screen the antibacterial effect of Lactococcus lactis against selected pathogens and to characterize its probiotic properties in vitro. The whole-cell product and cell-free supernatant of L. lactis were tested and the antibacterial effect of the whole-cell compound was found to be greater than that of the cell-free supernatant. L. lactis exhibited the greatest inhibitory effect against A. veronii from which it was isolated from the same environment. L. lactis showed observable growth at 4-37 °C, 1-4% NaCl, 0.3% ox gall and pH 2-3. The cells had 89.3 % hydrophobicity. Of the 19 enzymes tested in the API-ZYM system, only 7 were evident for the strain. L. lactis was resistant to streptomycin and sulfadiazine but was susceptible to 7 other antibiotics commonly used in aquaculture. It was γ-hemolytic. The results demonstrated that L. lactis exhibited probiotic properties such as being able to survive in a wide temperature and salinity range, growing in acidic and bile salt environments, and producing enzymes that can support digestion. According to these findings, L. lactis may have the potential to be used as a probiotic supplement in aquaculture.

___

  • Balcázar, J.L., Vendrell D., de Blas, I., Ruiz-Zarzuela, I., Gironés, O. & Múzquiz, J.L. (2007). In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Veterinary Microbiology, 122(3–4), 373–380.
  • Bauer, A.W., Kirby, W.M., Sherris, J.C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.
  • Burke, V., Robinson, J., Cooper, M., Beaman, J., Partridge, K., Peterson, D. & Gracey, M. (1984). Biotyping and virulence factors in clinical and environmental isolates of Aeromonas species, Applied and Environmental Microbiology, 47, 1146–1149. DOI:10.1128/aem.47.5.1146-1149.1984
  • de Souza, B., Borgonovi, T.F., Casarotti, S.N., Todorov, S.D. & Penna, A. (2019). Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics and Antimicrobial Proteins, 11(2), 382–396. DOI:10.1007/s12602-018-9406-y
  • de Vrese, M. & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Advances in Biochemical Engineering/Biotechnology, 111, 1–66. DOI:10.1007/10_2008_097
  • Falah, F., Vasiee, A., Behbahani, B.A., Yazdi, F. T., Moradi, S., Mortazavi, S.A. & Roshanak, S. (2019). Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microbial Pathogenesis, 131, 246–253. DOI: 10.1016/j.micpath.2019.04.006
  • Garcia, F., Pilarski, F., Onaka, E.M, de Moraes, F.R. & Martins, M.L. (2007). Hematology of Piaractus mesopotamicus fed diets supplemented with vitamins C and E, challenged by Aeromonas hydrophila. Aquaculture, 271, 39–46. DOI:10.1016/j.aquaculture.2007.06.021
  • Gomez-Gil, B., Roque, A. & Turnbull, J.F. (2000). The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture, 191, 259–270. DOI: 10.1016/S0044-8486(00)00431-2
  • Halim, M., Mohd Mustafa, N.A., Othman, M., Wasoh, H., Kapri, M.R. & Ariff, A.B. (2017). Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT - Food Science and Technology, 81, 210–216. DOI:10.1016/j.lwt.2017.04.009
  • Irianto, A. & Austin, B. (2002). Probiotics in aquaculture. Journal of Fish Diseases, 25, 633–642. DOI:10. 1046/j. 1365- 2761. 2002. 00422.x
  • Ivanova, E., Mikhailov, V.V., Kuznetsova, T.A., Afiyatullov, A.A., Kali novskaya, N.I., Elyakov, G.B., Kiprianova, E.A. & Garagulya, A.D. (1993). Heterotrophic bacteria associated with the sponge Dendrilla sp. and their physiological activity. Marine Biology, 19(1), 3–10.
  • Jacobsen, C.N., Rosenfeldt Nielsen, V., Hayford, A.E., Møller, P.L., Michaelsen, K.F., Paerregaard, A., Sandström, B., Tvede, M. & Jakobsen, M. (1999). Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Applied and Environmental Microbiology, 65(11), 4949–4956. DOI:10.1128/AEM.65.11.4949-4956.1999
  • Janda, J.M. & Abbott, S.L. (1998). Evolving concepts regarding the genus Aeromonas: an expanding Panorama of species, disease presentations, and unanswered questions. Clinical Infectious Diseases, 27, 332–344.
  • Jawan, R., Abbasiliasi, S., Mustafa, S., Kapri, M.R., Halim, M. & Ariff, A.B. (2021). In vitro evaluation of potential probiotic strain Lactococcus lactis Gh1 and its bacteriocin-like inhibitory substances for potential use in the food industry. Probiotics and Antimicrobial Proteins, 13(2), 422–440. DOI:10.1007/s12602-020-09690-3
  • Jena, P.K., Trivedi, D., Thakore, K., Chaudhary, H., Giri, S.S. & Seshadri, S. (2013). Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiology and Immunology, 57(6), 407–416. DOI:10.1111/1348-0421.12054
  • John, N. & Hatha, A.A.M. (2013). Distribution, extracellular virulence factors and drug resistance of motile aeromonads in freshwater ornamental fishes and associated carriage water. International Journal of Fisheries and Aquaculture, 3, 92–100. DOI: 10.5376/ija.2013.03.0017
  • Kim, D.H. & Austin, B. (2008). Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus mykiss) intestine. Letters in Applied Microbiology, 47(3), 141–147. DOI:10.1111/j.1472-765X.2008. 02401.x
  • Liu, X.F., Li, Y., Li, J.R., Cai, L.Y., Li, X.X., Chen, J.R. & Lyu, S.X. (2015). Isolation and characterization of Bacillus spp. antagonistic to Vibrio parahaemolyticus for use as probiotics in aquaculture. World Journal of Microbiology & Biotechnology, 31(5), 795–803. DOI:10.1007/s11274-015-1833-2
  • Maragkoudakis, P.A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B. & Tsakalidou, E. (2006). Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16, 189e199. DOI: 10.1016/j.idairyj.2005.02.009
  • Midhun, S.J., Neethu, S., Vysakh, A., Sunil, M.A., Radhakrishnan, E. K. & Jyothis, M. (2017). Antibacterial activity of autochthonous bacteria isolated from Anabas testudineus (Bloch, 1792) and it's in vitro probiotic characterization. Microbial Pathogenesis, 113, 312–320. DOI:10.1016/j.micpath.2017.10.058
  • Mohamad, N., Hidayah, M., Mhd, S., Najiah, M. & Mhd, I. (2020). Screening of lactic acid bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) as potential probiotics. Aquaculture Reports, DOI: 10.1016/j.aqrep.2020.100523
  • Newaj-Fyzul, A., Al-Harbi, A.H. & Austin, B. (2014). Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1–11.
  • Olmos, J., Acosta, M., Mendoza, G. & Pitones, V. (2020). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of Microbiology, 202(3), 427–435. DOI:10.1007/s00203-019-01757-2
  • Planas, M., Vázquez, J.A., Marqués, J., Pérez-Lomba, R., González, M.P. & Murado, M. (2004). Enhancement of rotifer (Brachionus plicatilis) growth by using terrestrial lactic acid bacteria. Aquaculture, 240(1-4), 313-329. DOI: 10.1016/j.aquaculture.2004.07.016
  • Resende, J.A., Silva, VL., Fontes, C.O., Souza-Filho, J.A., Rocha de Oliveira, T.L., Coelho, C.M., César, D.E. & Diniz, C.G. (2012). Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes and Environments, 27(4), 449–455. DOI:10.1264/jsme2.me12049
  • Ringø, E., Hoseinifar, S.H., Ghosh, K., Doan, H.V., Beck, B.R. & Song, S. K. (2018). Lactic Acid Bacteria in Finfish-An Update. Frontiers in Microbiology, 9, 1818. DOI:10.3389/fmicb.2018.01818
  • Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W.M., Fondén, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S.E. & Mattila-Sandholm, T. (1998). Demonstration of safety of probiotics - a review. International Journal of Food Microbiology, 44(1-2), 93–106. DOI:10.1016/s0168-1605(98)00128-7
  • Tagg, J.R., Dajani, A.S. & Wannamaker, L.W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 40(3), 722–756. DOI:10. 10.1128/br.40.3.722-756.1976.
  • Uzun, E. & Ogut, H. (2015). The isolation frequency of bacterial pathogens from sea bass (Dicentrarchus labrax) in the Southeastern Black Sea. Aquaculture, 437:30–37. DOI:10. 1016/j. aquaculture. 2014. 11. 017
  • Uzun Yaylacı, E. (2019). Developing a differentiation technique for the pathogenic bacteria causing disease in sea bass (Dicentrarchus labrax) by using artificial neural networks. Doctoral thesis, Karadeniz Technical University, The Graduate School of Natural and Applied Sciences, Trabzon, Turkey, 47p., 2019.
  • Uzun Yaylacı, E. (2021). Application of Artificial Neural Networks to Predict Inhibition in Probiotic Experiments. International Journal of Engineering and Applied Sciences, 13(3), 106–125. DOI: 10.24107/ijeas.1019382
  • Verschuere, L., Rombaut, G., Sorgeloos, P. & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655–671. DOI:10.1128/MMBR.64.4.655-671.2000
  • Vinderola, C.G., Medici, M. & Perdigon, G. (2004). Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria. Journal of Applied Microbiology, 96(2), 230–243. DOI: 10. 1046/j. 1365- 2672. 2004. 02158.x
  • Xu, Y., Tian, Y., Cao, Y., Li, J., Guo, H., Su, Y., Tian, Y., Wang, C., Wang, T. & Zhang, L. (2019). Probiotic Properties of Lactobacillus paracasei subsp. paracasei L1 and Its Growth Performance-Promotion in Chicken by Improving the Intestinal Microflora. Frontiers in Physiology, 10, 937. DOI:10.3389/fphys.2019.00937
  • Yaylacı, E.U. (2021). Isolation and characterization of Bacillus spp. from aquaculture cage water and its inhibitory effect against selected Vibrio spp. Archives of Microbiology, 204(1), 26. DOI:10.1007/s00203-021-02657-0
  • Zhou, X, Wang, Y, Yao, J. & Li, W. (2010). Inhibition ability of probiotic, Lactococcus lactis, against A. hydrophila and study of its immunostimulatory effect in tilapia (Oreochromis niloticus), International Journal of Engineering, Science and Technology, 2(7), 73–80. DOI: 10.4314/ijest. v2i7.63743
Journal of Anatolian Environmental and Animal Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Bülent VEREP
Sayıdaki Diğer Makaleler

Sinop Kıyı Ortamlarının Yeşil Deniz Alglerinden Ulva intestinalis Linnaeus, 1753 Türünün Biyokimyasal İçeriğindeki Mevsimsel Değişimler

Ali KARAÇUHA, Gökhan YILDIZ, Melek ERSOY KARAÇUHA

Farklı Besleme Materyallerinde Eisenia fetida Populasyon Değişimi ve Elde Edilen Solucan Gübresinin Daphne odora ‘Aureomarginata’ Bitkisinde Bazı Büyüme Parametrelerine Etkisinin Tespit Edilmesi

Turan YÜKSEK, Bahriye ÇEMBERCİ

Bozcaada’da (Çanakkale, Türkiye) Yaşayan Amfibi ve Sürüngen Türlerinin Olağandışı Kış Aktivitesi

Ceren Nur ÖZGÜL, Didem KURTUL, Çiğdem GÜL, Murat TOSUNOĞLU

Hazar Gölü ve Dicle Nehri Yukarı Havzasında Yeni Bir Squalius Türünün Tanımlanması (Teleostei: Leuciscidae)

Davut TURAN

Türkiye’nin Doğusunda Yer Alan Iğdır İlinin Ichneumonidae (Hymenoptera) Türlerine Katkılar

Yeşim BULAK KORKMAZ, Saliha ÇORUH

Gökkuşağı Alabalığından elde edilen balık çorbasının besin değeri (Oncorhyncus mykiss, Walbaum, 1792)

Bekir TUFAN, Matevz POMPE, Marjan VEBER, Drago KOCAR, Sevim KÖSE

İzmir Körfezi'nde (Türkiye'nin Ege Denizi Kıyısı) Dağılım Gösteren Başlıca Ticari Balık Türlerinin Boy-Ağırlık ve Boy-Boy İlişkileri / 2020-2021 Av Sezonu

Bahar BAYHAN, Arzu AYDIN UNCUMUSAOĞLU

Levrekten (Dicentrarchus labrax) İzole Edilen Lactococcus lactis'in Antibakteriyel Aktivitesi ve in vitro Probiyotik Özellikleri

Ecren UZUN YAYLACI

Zebra Midye (Dreissena polymorpha)'de Malathionun Akut Toksisitesi (LC50)’nin Belirlenmesi

Neşe AKÇANAL ÖDÜN, Osman SERDAR

GroBiotic®-A'nın Penaeus semisulcatus (de Haan, 1844) yavrularının büyüme performansı ve hayatta kalma oranı üzerindeki etkileri

Metin YAZICI, Mevlüt AKTAŞ, Yavuz MAZLUM, Berna Funda ÖZBEK