Fasulye gelişiminde, Rhizoctonia solani B227'nin biyotik stresine karşı Trichoderma harzianum ID11C'nin biyokontrol etkinliği

Çalışmada çay toprağından izole edilen Trichoderma harzianum ID11C suşunun bazı enzim aktivitesi, ağır metallere toleransı, tohum (domates, mısır ve fasulye) çimlenmesi üzerine etkinliği ve fasulyede Rhizoctonia solani B227 (AG-4)'nin biyotik stresine karşı biyokontrol aktivitesinin araştırılması amaçlandı. T. harzianum ID11C suşunun bazı enzim aktiviteleri kromojenik yöntemle incelendi. Sonuçlar farklı konsantrasyonlarda ağır metal (Cu, Pb, Zn ve Cd) ve tuz toleransı olduğunu gösterdi.T. harzianum ID11C Rhizoctonia solani B227(AG4) izolatının fasulye gelişimine karşın patojenite testi ve T. harzianum ID11C suşunun tohum çimlenme başarısına olan etkinliği, su agar metodu ile incelendi. T. harzianum ID11C ve R. solani B227 varlığında fasulye gelişim parametreleri saksı deneyi ile araştırıldı. Fizyolojik (ana kök ve gövde uzunluğu, saçaklanma sayısı, yaprak sayısı, yaş ve kuru ağırlıkları) parametreler ölçüldü ve istatistiksel analizleri yapıldı.Trichoderma harzianum ID11C suşu, yüksek konsantrasyonlarda ağır metallere (100-400 mM) ve tuza (250 mM) karşı toleranslıdır. Bitki gelişimini teşvik eden enzim aktivitelerinin var olduğu gözlendi.   T. harzianum suşunun tohumların çimlenme başarısı üzerinde kontrole kıyasla olumsuz bir etkisinin olmadığı tespit edildi. Saksı deneyinde, kontrol ile R. solani B227 grupları birbirine kıyaslandığında, gövde ve ana kök uzunluğu, saçaklanma sayısı ve kökte lezyon skala değerleri ile yapılan istatistik analizi sonucu aralarında anlamlı farkın (p< 0.05, Tukey) olduğu belirlendi. R. solani B227 ve T. harzianum ID11D’nin ayrı ayrı fasulye gelişimi üzerine olan etkileri,  kontrol grubuna göre iyi olmadığı belirlendi. Ancak ID11C ve B227+ID11C grupları B227 grubu ile kıyaslandığında, patojenik etkinliği azalttığı belirlendi. R. solani B227 (AG4) izolatı, fasulyede (Zulbiye) patojeniteye neden olduğu, T. harzianum ID11C suşunun ise istatistiksel olarak olumlu yönde anlamlı bir fark oluşturmamasına rağmen, tüm parametrelerde patojeniteyi azalttığı belirlendi. T. harzianum ID11C suşunun fasulye tarımında Rhizoctonia solani’ye karşı biyokontrol ve bitki destekleyici ajan olarak kullanılabileceği sonucuna varıldı.

The biocontrol activity of Trichoderma harzianum ID11C against to the biotic stress of Rhizoctonia solani B227 in bean development

The aim of the study was to determine the efficacy of Trichoderma harzianum ID11C strain isolated from tea soil on germination of seeds (tomato, maize and bean) and to investigate the biocontrol efficacy against biotic stress of Rhizoctonia solani B227(AG4) in beans. Some enzyme activities of T. harzianum ID11C strain were investigated by chromogenic method. It was determined that it had tolerance to heavy metals (Cu, Pb, Zn and Cd) and salt in different concentrations. The results showed different concentration of some heavy metal(Cu, Pb, Zn ve Cd) resistance and salt tolerance. The pathogenicity test against the bean development of the Rhizoctonia solani isolate and the efficiency of the T. harzianum strain to seed germination success were determined by the water agar method. In the presence of T. harzianum and Rhizoctonia solani, bean development parameters were investigated by pot experiment. Physiological parameters (root and stem length, number of hair root, leaf surface area and number, wet and dry weights, etc.) were measured and then statistical analyzes were performed.Trichoderma harzianum ID11C strain was determinated to tolerant against to high concentrations of heavy metals (100-400 mM) and salt (250 mM). It was observed that there were enzyme activities that promote plant growth. It was determined that T. harzianum strain had no negative effect on the germination success of the seeds compared to the control. In the pot experiment, when the control group and R. solani groups were compared with each other, it was determined that there was a significant difference between the results of the statistical analysis performed with the stem and main root length, the number of lateral root and the root lesion scale (Tukey test, p<0.05). The effects of R. solani or T. harzianum on bean development were not as good as the control group. However, ID11C and B227+ID11C groups were found to reduce pathogenic activity when compared with group B227. It was determined that R. solani caused pathogenesis in the bean (Zulbiye), whereas T. harzianum strain decreased pathogenicity in all parameters, although it is not statistically significant. It was concluded that T. harzianum ID11C strain could be used as biocontrol and plant supporting agent against Rhizoctonia solani in bean farming.

___

  • Agrawal, T. & Kotasthane, A.S. (2012). Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chattisgarh in Central India. Springer Plus, (1), 73.
  • Allah, A.A., Shimaa, A., Zayed, B. & Gohary, A.E. (2010). The role of root system traits in the drought tolerance of rice (Oryza sativa L.). International Journal Of Agriculture And Biological Sciences, 1, 83-87.
  • Alpay Karaoğlu, Ş. & Ülker, S. (2006). Isolation, identification and seasonal distribution of soilborne fungi in tea growing areas of Iyidere-Ikizdere vicinity (Rize-Turkey), Journal Of Basic Microbiology, 46, 208-218.
  • Alpay Karaoğlu, Ş., Bozdeveci A. & Pehlivan Gedik N. (2018). Characterization of local Trichoderma spp. as potential biocontrol agents, screening of in-vitro antagonistic activities and fungisit tolerance, Hacettepe Journal of Biology&Chemistry, 46 (2), 247-261.
  • Anees, M., Tronsmo A., Edel-Hermann V., Hjeljord, L. G., Héraud, C. & Steinberg, C. (2011).Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol, 114, 91-701.
  • Aydoğan, M. N., Algur, Ö. M. & Özdemir, M. (2013). Isolation and Characterisation of Some Bacteria and Microfungus Solving Tricalcium Phosphate. Adyutayam, 1, 11-20.
  • Aziz, N. H., El-Fouly, M. Z., El-Essawy, A. A. & Khalaf, M. A. (1997). Influence of bean seedling root exudates on the rhizosphere colonization by Trichoderma lingorum for the control of Rhizoctonia solani. Botanical Bulletin of Academia Sinica, 38, 33-39.
  • Beagle-Ristaino, J.E. & Papavizas, G.C. (1985). Biological-control of Rhizoctonia stem canker and black scurf of potato.Phytopathology, 75, 560-564.
  • Berta, G., Sampo, S., Gamalero, E., Massa, N. & Lemanceau, P. (2005). Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. European Journal of Plant Pathology, 111(3), 270-288.
  • Braam, F. & Klapwijk, A. (1981). Effect of copper on nitrification in activated sludge. Water Res., 5, 1093-1101.
  • Bozdeveci, A. (2014). Toprak Kökenli Trichoderma spp. izolatlarının moleküler karakterizasyonu ve biyolojik mücadele etkinliklerinin belirlenmesi. Recep Tayyip Erdoğan Üniversitesi, Fen Bil. Enst. Rize-Türkiye, 120s.
  • Carlisle, G.E. & Falkinham, J.O. (1989). Enzyme Activities and Antibiotic Susceptibility of Colonial Variants of Bacillus subtilis and Bacillus licheniformis. Applied And Environmental Microbiology, 3026-3028. DOI:0099-2240/89/113026-03.
  • Chernin, L. & Chet, I. (2002). Microbial enzymes in the biocontrol of plant pathogens and pests. In: Dick RP, Burns RG (eds), Enzyme in the Environment, New York, USA, Marcel Dekker, 171-225.
  • De França, S.K.S., Cardoso, A.F., Lustosa, D.C., Ramos, E.M.L.S. & De Filippi, M.C.C. (2015). Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agron Sustain Dev., 35, 317-324.
  • Dworken, M. & Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75, 592-601.
  • Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109-117.
  • Goettel, M.S. & Inglis, D.G. (1997). Fungi: Hyphomycetes. In: Lacey, L.A. (ed.) Manual of Techniques in Insect Pathology. Academic Press, London, pp. 213-249.
  • Guler, N.S., Pehlivan, N., Karaoglu, S.A., Guzel, S. & Bozdeveci, A. (2016). Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant, 38, 132.
  • Haba, E.,Bresko, O., Ferrer, C., Marqués, A., Busquets, M. & Manresa, A. (2000). Isolation of Lipase-Secreting Bacteria by Deploying Selective Substrate, Enzyme and Microbial Technology, 26, 40-44.
  • Hagedorn, D.J. (1991). Rhizoctonia Root Rot. In Compendium of Bean Diseases; Hall, R., Ed.; APS, American Phytopathological Society: Saint Paul, MN, USA, p. 13.
  • Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56.
  • Harman, G.E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190-194. doi: 10.1094/PHYTO-96-0190.
  • Hermosa, R., Viterbo, A., Chet, I. & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17-25.
  • Higginbotham, R. W., Paulitz, T. C., Garland-Campbell, K. A. & Kidwell K.K. (2004). Evaluation of Adapted Wheat Cultivars for Tolerance to Pythium Root Rot. Plant Disease, 88(9), DOI:10.1094/PDIS.2004.88.9.1027.
  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis., 87, 4-10. doi: 10.1094/PDIS.2003.87.1.4.
  • Keen, B.A and H. Raczkowski. 1992. Clay contents and certain physical properties of soil. J. Agric. Sci., 11, 441-449.
  • Korentajar, L. (1991). A review of the agricultural use of sewage sludge. Benefits and potential hazards. Water SA. 17 (3), 189-196.
  • Larkin, R. & Brewer, M. (2005). Effects of biological amendments on soil microbiology and soilborne potato diseases in different cropping systems. Phytopathology, 95(6), S56-S56.
  • Lewis, J.A. & Papavizas, G.C. (1987). Reduction of inoculum of Rhizoctonia solani in soil by germlings of Trichoderma hamatum. Soil Biology & Biochemistry, 19(2), 195-201.
  • Li, N., Alfiky, A., Wang, W., Islam, M., Nourollahi, K., Liu, X. & Kang, S. (2018). Volatile Compound-Mediated Recognition and Inhibition Between Trichoderma Biocontrol Agents and Fusarium oxysporum. Frontiers in Microbiology, 9, 2614. doi: 10.3389/fmicb.2018.02614
  • Lucy, M., Reed, E. & Glick, B.R. (2004). Aplications of free living plant grovth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86, 1-25.
  • Madoni, P., Davoli, D., Gorbi, G. & Vescoli, L. (1996). Toxic effects of heavy metals on the activated sludge. Protozoan community. Water Res., 30, 135-41.
  • Mayo, S., Gutiérrez, S., Malmierca, M.G., Lorenzana, A., Campelo, M.P., Hermosa, R. & Casquero, P.A. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front Plant Sci., 6, 685. doi: 10.3389/fpls.2015.00685.
  • Mihuta-Grimm, L. & Rowe, R. C. (1986). Trichoderma spp. as biocontrol agents of Rhizoctonia damping-off of radish in organic soil and comparison of four delivery systems. Phytopatology, 76(3), 306-311.
  • Mohamed, H. A-L. A. & Haggag, W. M. (2006). Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum. Brazilian Journal of Microbiology, 37( 2), 181-191.
  • Muyolo, N.G., Lipps, P.E. & Schmitthenner, A.F. (1993). Anastomosis grouping and variation in virulance among isolates of Rhizoctonia solani associated with dry bean and soybean in Ohio and Zaire. Phytopathology, 83, 438-444.
  • Nongmaithem, N., Roy, A. & Bhattacharya, P.M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47 (2), 305-313.
  • Pandey, P.,Irulappan, V., Bagavathiannan, M.V. & Senthil-Kumar, M. (2017). Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Frontiers in Plant Science, 8, 537.
  • Papavizas, G. C., Lewis, J. A. & Abdelmoity, T. H. (1982). Evaluation of New Biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities. Phytopathology, 72(1), 126-132. DOI: 10.1094/Phyto-72-126.
  • Pérez-Miranda, S., Cabirol, N., George-Téllez, R., Zamudio-Rivera, LS. & Fernández, FJ. (2007). O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 70(1), 127-31.
  • Royse, D.J. & Ries, S.M. (1978). The influence of fungi isolated from peach twings on the pathogenicity of Cytospora cincta. Phytopathology, 68, 603-607.
  • Sawant, I. (2014). Trichoderma foliar pathogen interactions. Open Mycol. J., 8 (Suppl. 1), 58-70. doi: 10.2174/1874437001408010058.
  • Schmidt, J.P. (1997). Understanding phytotoxicity thresold for trace elements in land applied sewage sludge. J. Environmental Qual., 26, 4-10.
  • Schuster, A. & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol, 87, 787-799.
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47-56.
  • Shoresh, M., Harman, G. E. & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol., 48, 21-43. doi: 10.1146/annurev-phyto-073009-114450.
  • Simonetta, S., Avidano, L. & Berta, G. (2007). Morphogenetic effects induced by pathogenic and non pathogenic Rhizoctonia solani Kühn strains on tomato roots. Caryologia, 60(1-2), 141-145. DOI: 10.1080/00087114.2007.10589563.
  • Sneh, B. & Ichievlevich-Auster, M. (1998). Induced Resistance of Cucumber Seddlings Caused by Some Non-pathogenic Rhizoctonia (np-R) Isolates. Phytoparasitica, 26 (1), 27-38.
  • Steyaert, J. M., Ridgway, H. J., Elad, Y. & Stewart, A. (2003). Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. New Zealand Journal of Crop and Horticultural Science, 31(4), 281-291.
  • Tansengco, M., Tejano, J., Coronado, F., Gacho, C. & Barcelo, J. (2018). Heavy Metal Tolerance and Removal Capacity of Trichoderma species Isolated from Mine Tailings in Itogon, Benguet. Environment and Natural Resources Journal, 16(1), 39-57.
  • Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y. & Valero, J.R. (2007). Antagonistic fungi, Trichoderma spp. Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20.
  • Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. Open Mycol. J., 8, 71-126. doi: 10.2174/1874437001408010071. Worasatit, N., Sivasithamparam, K., Ghisalberti, E. L. & Rowland, C. (1994). Variation in Pyrone Production, Lytic Enzymes and Control of Rhizoctonia Root-Rot of Wheat among Single-Spore Isolates of Trichoderma koningii. Mycological Research, 98, 1357-1363.
  • Yiğit, F. (2011). Trichoderma harzianum T22 Irkının Farklı pH ve Tuz Konsantrasyonlarına Adaptasyonu ve Domateste Fusarium oxysporum f.sp. radicis- lycopersici ’in Biyolojik Kontrolünde Kullanılması. Selçuk Tarım ve Gıda Bilimleri Dergisi, 25(4), 6-10. ISSN:1309-0550.