Some new large sets of geometric designs of type LS[3][2, 3, 2 8 ]

Some new large sets of geometric designs of type LS[3][2, 3, 2 8 ]

Let $V$ be an  $n$-dimensional vector space over $\F_q$. By a {\textit {geometric}} $t$-$[q^n,k,\lambda]$ design we mean a collection $\mathcal{D}$ of $k$-dimensional subspaces of $V$, called blocks, such that every $t$-dimensional subspace $T$ of $V$ appears in exactly $\lambda$ blocks in $\mathcal{D}.$ A {\it large set}, LS[N]$[t,k,q^n]$, of geometric designs, is a collection of N $t$-$[q^n,k,\lambda]$ designs which partitions the collection $V \brack k$ of all $k$-dimensional subspaces of $V$. Prior to recent article [4] only large sets of geometric 1-designs were known to exist. However in [4] M. Braun, A. Kohnert, P. \"{O}stergard, and A. Wasserman constructed the world's first large set of geometric 2-designs, namely an LS[3][2,3,$2^8$], invariant under a Singer subgroup in $GL_8(2)$. In this work we construct an additional 9 distinct, large sets LS[3][2,3,$2^8$], with the help of lattice basis-reduction.

___

  • A. Betten, R. Laue, A. Wassermann, Simple 7-designs with small parameters, J. Combin. Des. 7(2) (1999) 79–94.
  • M. Braun, T. Etzion, P. J. R. Östergard, A. Vardy, A. Wassermann, Existence of q-analogs of Steiner Systems, submitted, 2013.
  • M. Braun, A. Kerber, R. Laue, Systematic construction of q-analogs of t - $(v; k; lambda)$-designs, Des. Codes Cryptogr. 34(1) (2005) 55–70.
  • M. Braun, A. Kohnert, P. R. J. Östergard, A. Wassermann, Large sets of t-designs over finite fields, J. Combin. Theory Ser. A 124 (2014) 195–202.
  • P. J. Cameron, Generalisation of Fisher’s inequality to fields with more than one element, Lond. Math. Soc. Lecture Note Ser. 13 (1974) 9–13.
  • P. J. Cameron, Locally symmetric designs, Geometriae Dedicata 3(1) (1974) 65–76.
  • P. Delsarte, Association schemes and t-designs in regular semilattices, J. Combin. Theory Ser. A 20(2) (1976) 230–243.
  • A. Fazeli, S. Lovett, A. Vardy, Nontrivial t-designs over finite fields exist for all t, J. Combin. Theory Ser. A 127 (2014) 149–160.
  • T. Etzion, A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inf. Theory 57(2) (2011) 1165–1173.
  • T. Itoh, A new family of 2-designs over GF(q) admitting $SL_m(q^l)$, Geometriae Dedicata 69(3) (1998) 261–286.
  • R. Koetter, F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory 54(8) (2008) 3579–3591.
  • E. S. Kramer, D. M. Mesner, t-designs on hypergraphs, Discrete Math. 15(3) (1976) 263–296.
  • E. S. Kramer, D. W. Leavitt, S. S. Magliveras, Construction procedures for t-designs and the existence of new simple 6-designs, Ann. Discrete Math. 26 (1985) 247–274.
  • G. Kuperberg, S. Lovett, R. Peled, Probabilistic existence of regular combinatorial structures, arXiv:1302.4295v2.
  • D. L. Kreher, D. R. Stinson, Combinatorial Algorithms : generation, enumeration and search, CRC Press, vol. 7, 1998.
  • R. Laue, S. S. Magliveras, A. Wassermann, New large sets of t-designs, J. Combin. Des. 9(1) (2001) 40–59.
  • M. Miyakawa, A. Munemasa, S. Yoshiara, On a class of small 2-designs over GF(q), J. Combin. Des. 3(1) (1995) 61–77.
  • D. K. Raychaudhuri, E. J. Schram, A large set of designs on vector spaces, J. Number Theory 47(3) (1994) 247–272.
  • H. Suzuki, 2-Designs over GF(q), Graphs Combin. 8(4) (1992) 381–389.
  • S. Thomas, Designs over finite fields, Geom. Dedicata 24(2) (1987) 237–242.