The 3-GDDs of type $g^3u^2$
The 3-GDDs of type $g^3u^2$
A 3-GDD of type ${g^3u^2}$ exists if and only if $g$ and $u$ have the same parity, $3$ divides $u$ and $u\leq 3g$.Such a 3-GDD of type ${g^3u^2}$ is equivalent to an edge decomposition of $K_{g,g,g,u,u}$ into triangles.
___
- D. Bryant, D. Horsley, Steiner triple systems with two disjoint subsystems, J. Combin. Des. 14(1) (2006) 14–24.
- C. J. Colbourn, Small group divisible designs with block size three, J. Combin. Math. Combin. Comput. 14 (1993) 153–171.
- C. J. Colbourn, C. A. Cusack, D. L. Kreher, Partial Steiner triple systems with equal-sized holes, J. Combin. Theory Ser. A 70(1) (1995) 56–65.
- C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, Second Edition, CRC/Chapman and Hall, Boca Raton, FL, 2007.
- C. J. Colbourn, D. Hoffman, R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59(1) (1992) 73–89.
- C. J. Colbourn, M. A. Oravas, R. S. Rees, Steiner triple systems with disjoint or intersecting subsystems, J. Combin. Des. 8(1) (2000) 58–77.
- R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, J. Combin. Theory Ser. A 45(2) (1987) 207-225.
- R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972) 220–245.
- R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A 13 (1972) 246–273.