Consequence Modelling and Analysis of Methane Explosions: A prelimi-nary Study on Biogas Stations

Biomass is one of the most important sources of renewable energy. Biomass resources can be utilized by producing biogas in the biogas stations, which include process equipment operating in critical conditions. In this study, a consequence analysis of a methane gas explosion carried out to estimate the explosion and the toxic threat zones of a biogas station in Turkey. ALOHA and PHAST Software Tools are used to realize an explosion by modelling scenarios and thus to estimate the effects of an explosion just to get an insight on methane gas explosion. By using ALOHA software, two different scenarios as leakage from the biogas tank and flammable chemical escaping directly into the atmosphere are designed and calculated by the Gaussian model. In addition to that, two different explosion scenarios as a leakage scenario from the biogas storage tank and a catastrophic rupture scenario are computed by using the PHAST Software. According to the first scenario results from ALOHA, explosions can cause destruction of buildings, serious injuries and shattering of glasses in the threat zones about 200 m while in the second scenario only shattering of glasses can be seen in 22 m of threat zone. The results from the PHAST show that threat zones do not change significantly at different weather conditions. It is found that the catastrophic rupture has maximum hazard zone limits among all the scenarios. It has been concluded that using different model-based software can be useful to understand possible results of biogas plant explosions.

___

  • Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook, University of Southern Denmark Esbjerg, Denmark. Retrieved from https://www.lemvigbiogas.com/BiogasHandbook.pdf
  • Amyotte, P., & Lupien, C. (2017). Different hazards, similar causes same results. Loss Prevention Bulletin, 253, 14–18.
  • Arıkan B., (2008). Organik Evsel Katı Atıklardan Anaerobik Ortamda Biyogaz Üretiminin Verimliliğinin Araştırılması. (Master’s thesis). . Çukurova Üniversitesi, Adana, Turkey. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Baker, Q.A., Tang, M.J., Scheier, E.A., & Silva, G.J., (1996). Vapour cloud explosion analysis. Process Safety Progress, 15 (2), 106-109. DOI: https://doi.org/10.1002/prs.680150211
  • Bhattacharya, R., & Ganesh Kumar, V. (2015). Consequence analysis for simulation of hazardous chemicals release using ALOHA software. International Journal of ChemTech Research, 8(4), 2038-2046.
  • Bilici, E. N., (2019). Occupational Health and Safety Management Systems Application in Biogas Plant, Master Thesis, Uskudar University. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Boscolo, M., Bregant, L., Miani, S., Padoano, E., & Piller, M. (2019). An enquiry into the causes of an explosion accident occurred in a biogas plant. Process Safety Progress, 12063. DOI: https://doi.org/10.1002/prs.12063
  • Carboni, M., Pio, G., Vianello, C., & Salzano, E. (2020). Safety distances for the sour biogas in digestion plants. Process Safety And Environmental Protection, 147, 1-7. DOI: https://doi.org/10.1016/j.psep.2020.09.025
  • Casson, M. V., Papasidero, S., Scarponi, G. E., et al., (2016). Analysis of accidents in biogas production and upgrading. Renewable Energy, 96, 1127–1134. DOI: https://doi.org/10.1016/j.renene.2015.10.017
  • Çeti̇nyokuş, S . (2017). Sonuç analizi ile belirlenen etki mesafeleri üzerine atmosferik seçimlerin etkisi (ALOHA yazılımı). Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (1), 209-217. DOI: https://doi.org/10.5578/fmbd.52776
  • Dadashzadeh, M., Khan, F., Hawboldt, K., & Amyotte, P. (2013). An integrated approach for fire and explosion consequence modelling. Fire Safety Journal, 61, 324–337. DOI: https://doi.org/10.1016/j.firesaf.2013.09.015
  • Dasgotra, A., Varun Teja, G. V. V., Sharma, A., & Mishra, K. B. (2018). CFD modelling of large-scale flammable cloud dispersion using FLACS. Journal of Loss Prevention in the Process Industries, 56, 531–536. DOI: https://doi.org/10.1016/j.jlp.2018.01.001
  • Davis, S. G., Engel, D., Gavelli, F., Hinze, P., & Hansen, O. R. (2014). Advanced methods for determining the origin of vapor cloud explosions case study: The 2006 Danvers explosion investigation. Fire Technology, 50(4), 823–850. DOI: https://doi.org/10.1007/s10694-012-0305-6
  • Derychova, K., & Bernatik, A. (2016, April). Risk assessment of biogas plants. Proceedings of the 1st International Conference on Applied Mathematics in Engineering and Reliability, Ho Chi Minh City, Vietnam.
  • DNV GL., (2018). PHAST 3D Explosion Flier. Retrieved from: https://www.dnvgl.com/software/services/phast/phast-module-3d-explosions.html
  • Dou, Z., Zheng, L., Zheng, K., Pan, R.,Yang, W., & Fu, Y., (2020). Effect of film thickness and methane fraction on explosion characteristics of biogas/air mixture in a duct. Process Safety and Environmental Protection, 139, 26-35. DOI: https://doi.org/10.1016/j.psep.2020.04.006
  • EPA. (2017). ALOHA Software. Retrieved from: https://www.epa.gov/cameo/aloha-software
  • Hasani F., & Nader N., (2016). Consequence modelling and analysis of gas export compression unit using PHAST software, International Journal of Advanced Biotechnology and Research, 7 (5), 1344-1349.
  • Inanloo, B., & Tansel, B. (2015). Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia. Journal of Environmental Management, 156, 1–9. DOI: https://doi.org/10.1016/j.jenvman.2015.02.044
  • Kotek, L., Trávníček, P., & Blecha, P. (2015). Accident analysis of european biogas stations. Chemical Engineering Transactions, 43, 1933–1938. DOI: https://doi.org/10.3303/CET1543323
  • Köse, T. E. (2017). Trakya bölgesinde hayvan gübrelerinin biyogaz enerji potansiyelinin belirlenmesi ve sayısal haritaların oluşturulması, Pamukkale Üniversitesi Mühendislik Bilim Dergisi, Denizli
  • Krentowski, J., & Ziminski, K. (2019). Consequences of an incorrect assessment of a structure damaged by explosion. Engineering Failure Analysis, 101, 135–144. DOI: https://doi.org/10.1016/j.engfailanal.2019.03.009
  • Lee, H. E., Yoon, S. J., Sohn, J. R., Huh, D. A., Lee, B. W., & Moon, K. W. (2019). Flammable substances in Korea considering the domino effect: Assessment of safety distance. International Journal of Environmental Research and Public Health, 16(6). DOI: https://doi.org/10.3390/ijerph16060969
  • Lv, D., Tan, W., Liu, L., Zhu, G., & Peng, L. (2017). Research on maximum explosion overpressure in LNG storage tank areas. Journal of Loss Prevention in the Process Industries, 49, 162–170. DOI: https://doi.org/10.1016/j.jlp.2017.06.010
  • Mannan, M. S., (2012). Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control. (4th ed.). Elsevier. DOI: https://doi.org/10.1016/C2009-0-24104-3
  • Molnarne, M., & Schroeder, V. (2019). Hazardous properties of hydrogen and hydrogen containing fuel gases. Process Safety and Environmental Protection. 130, 1–5. DOI: https://doi.org/10.1016/j.psep.2019.07.012
  • Moreno, V.C., & Cozzani, V., 2015. Major accident hazard in bioenergy production. Journal of Loss Prevention in the Process Industries, 35, 135–144. DOI: https://doi.org/10.1016/j.jlp.2015.04.004
  • Naemnezhad, A., Isari, A.A., Khayer, E. et al. (2017). Consequence assessment of separator explosion for an oil production platform in south of Iran with PHAST software. Modelling Earth Systems and Environment, 3, 43. DOI: https://doi-org.proxy.uskudar.edu.tr/10.1007/s40808-017-0297-9
  • Okho, P., & Haugen, S. (2013). Maintenance-related major accidents: Classification of cause and case study. Journal of Loss Prevention and Process Industry, 26, 1060–1070. DOI: https://doi.org/10.1016/j.jlp.2013.04.002
  • Pandya, N., & Marsden, E. (2008). Toxic release dispersion modelling with PHAST: Parametric sensitivity analysis. 3rd International Conference on Safety & Environment in Process Industry, Italy.
  • Pietrangeli, B., Lauri, R., & Bragatto, P. (2013). Safe operation of biogas plants in Italy. Chemical Engineering Transactions. 32, 199–204. DOI: https://doi.org/10.3303/CET1332034
  • Yadav, R., Chaudhary, S., Yadav, B. P., Varadharajan, S., & Tauseef, S. M. (2020). Assessment of Accidental Release of Ethanol and Its Dangerous Consequences Using ALOHA, Advances in Industrial Safety, Springer Singapore.
  • Sasso S., Laterza E., & Valenzano. B. (2012). A Study about explosion hazards in presence of an uncontrolled anaerobic digestive process. Chemical Engineering Transactions, 26, 135-140. DOI: https://doi.org/10.3303/CET1226023
  • Schroder, V., Schalau, B., & Molnarne, M. (2014). Explosion protection in biogas and hybrid power plants. Procedia Engineering, 84, 259-272. DOI: https://doi.org/10.1016/j.proeng.2014.10.433
  • Trávnícek, P., Kotek, L., Nejtek V., Koutný T., Junga P., & Vítěz T. (2018). Quantitative analyses of biogas plant accidents in Europe. Renewable Energy, 122, 89–97. DOI: https://doi.org/10.1016/j.renene.2018.01.077
  • Tseng, J. M., Su, T. S., & Kuo, C. Y. (2012). Consequence evaluation of toxic chemical releases by ALOHA. Procedia Engineering, 45, 384-389. DOI: https://doi.org/10.1016/j.proeng.2012.08.175
  • Van der Berg, A.C. (1985). The multi-energy method: A framework for vapour cloud explosion blast prediction. Journal of Hazardous Materials, 12, 1-10.
  • Wang, Y., Zhang, R., Zhang, Z., & Wang, F. (2017). Leakage risk quantitative calculation model and its application for anaerobic reactor. Journal of the Taiwan Institute of Chemical Engineers, 77, 152–160. DOI: https://doi.org/10.1016/j.jtice.2017.04.038
  • Zareei, H., Nikou M. K., & Shariati A. (2016). A consequence analysis of the explosion of spherical tanks containing liquefied petroleum gas (LPG). Iranian Journal of Oil & Gas Science and Technology, 5 (3), 32-44.
  • Zhang, Q., Zhou, G., Hu, Y., Wang, S., Sun, B., Yin, W., & Guo, F. (2019). Risk evaluation and analysis of a gas tank explosion based on a vapor cloud explosion model: A case study. Engineering Failure Analysis, 101, 22–35. DOI: https://doi.org/10.1016/j.engfailanal.2019.03.003