Şişen Killerin İyileştirilmesinde Jips Kolonu Performansının Araştırılmasına İlişkin Laboratuvar Model Çalışması

Killi zeminler üzerine inşa edilen özellikle hafif yapıların temel tasarımlarında dikkate alınması gerekenen önemli zemin davranışı şişme özelliği ve buna bağlı olarak yüzeyde meydana gelecek zemin kabarmalarıdır.Bu nedenle, bu yapılarla ilgili zemin araştırmalarında söz konusu killi zeminin şişme özelliklerinin ve uyguniyileştirme yönteminin belirlenmesi çok büyük önem taşımaktadır. Literatürde kireç, çimento, uçucu kül, jips, bitüm,reçine, kimyasallar, vb. ile ilgili birçok zemin iyileştirme yöntemlerine sıklıkla rastlanmaktadır. Şişen zeminleriniyileştirilmesinde kullanılan bu yöntemlerin başında iyileştirme kimyasalları ve finansal boyutun önemi büyüktür.Bu nedenle düşük maliyette en iyi iyileştirmenin yapılması birincil amaçtır. Bu çalışma kapsamında killi zeminleriniyileştirilmesinde jips kolonlarının performansının araştırılmasına ilişkin bir laboratuvar model çalışmasınıngerçekleştirilmesi planlanmıştır. Amaca yönelik olarak; laboratuvarda hazırlanan bir arazi modeline yerleştirilen jipskolonu ile kolondan itibaren mesafeye bağlı olarak zeminin şişmesinde meydana gelen değişimler belirlenmiştir. Eldeedilen model verilerine dayalı olarak da jips kolon tekniğinin iyileştirme performansı araştırılmış ve tartışılmıştır.

A Laboratory Model Study Related with the Determination of Gypsum Column Performance in Treatment of Expansive Soils

The most important soil behaviour in order to consider in foundation designs of specially light structures built on clay soils is swelling properties of the soil and accordingly soils heave which occurs on soil surface. For this reason, in surveys related to this kind of soils, it is quite important to determine the swelling properties of soils and appropriate stabilisation methods. Literature contains a vast number of stabilising techniques such as; lime, cement, fly ash, bitume and resin for treatment of expansive soils. Financial perspective of these techniques is very important. Therefore, the primary purpose is low cost for the best treatment. In this study, a laboratory model study was conducted in order to determine the performance of gypsum column technique on treatment of clay soils. For this purpose, gypsum column was built in a field model which built in the laboratory and the changes on swelling of the soil was determined depending on the distance from the column. By using the obtained model data, the performance of gypsum column technique was analyzed and discussed.

___

  • Abiodun, A.A., Nalbantoglu, Z., 2015. Lime pile techniques for the improvement of clay soils. Canadian Geotechnical Journal, 52, 760-768.
  • Akawwi, E., Kharabsheh, A., 2000. Lime stabilization effects on geotechnical properties of expansive soils in Amman, Jordan. Journal of Geotechnical Engineering, 5, 201-210.
  • Al-Mukhtar, M., Khattab, S., Alcover, J.S., 2012. Microstructure and Geotechnical Properties of Lime-Treated Expansive Clayey Soil. Engineering Geology, 139-140, 17–27.
  • Ameta, N.K., Prohit, D.G.M., Wayal, A.S., Sandeep, D., 2007. Economics of stabilizing bentonite soil with lime-gypsum. Electronic Journal of Geotechnical Engineering, Volume 12, Bundle E
  • Amu, O.O., Fajobi, A.B., Afekhuai, S.O., 2005. Stabilizing potential of cement and fly ash mixture on expansive clay soils. Journal of Applied Sciences, 5, 1669-1673.
  • ASTM D-698, 1994. Soil and Rock: Sec. 4, V. 04.08. American Society for Testing and Materials. Designation: D-4546.
  • ASTM D-4546, 1994. Soil and Rock: Sec. 4, V. 04.08. American Society for Testing and Materials. Designation: D-4546.
  • ASTM- D 2166, 1994. Soil and Rock: Sec. 4, V. 04.08. American Society for Testing and Materials. Designation: D-4546.
  • Basma, A.A., Al-Rawas, A., Al-Saadi, S.N., AlZadjalı, T.F., 1998. Stabilization of expansive clay in Oman. Environmental and Engineering Geoscience, 4, 503-510.
  • Bell, F.G., Maud, R.R., 1995. Expansive clays and construction, especially of low-rise structures: a viewpoint from Natal, South Africa. Environmental and Engineering Geoscience, 1, 41-59.
  • BS 1377, 1975. Methods of Test for Soils for Civil Engineering Purposes. British Standards Institution, London.
  • Brandl, H., 1981. Alteration of soil parameters by stabilization with lime. Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 587-594.
  • Broms, B., Boman, P., 1979. Lime columns-a new foundation method. Journal of Geotechnical Engineering Division, ASCE, 105, 539-556.
  • Çetiner, S.I., 2004. Şişen zeminlerin Çayırhan uçucu külü ve desülfojips ile stabilizasyonu, yüksek lisans tezi, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 107 s.
  • El-Rawi, M.N., Awad, A.A.A., 1981. Permeability of lime stabilized soils. Journal of Transportation Engineering Division, ASCE, 107, 25-35.
  • Ferguson, G., 1993. Use of self-cementing fly ashes as a soil stabilization agent, fly ash for soil improvement. Geotechnical Special Publication, 36, 1-15.
  • FIPR (Florida Institute of Phosphate Research), 1988. Stabilization of phosphatic clay with lime columns. Report prepared by Bromwell and Carrier Inc. under a grant sponsored by the Florida Institute of Phosphate Research, BartowFlorida, 102 p.
  • Garzón, E., Cano, M., O`Kelly, B.C., Sánchez-Soto, P., 2016. Effect of lime on stabilization of phyllite clays. Applied Clay Science, 123, 329–334.
  • Gillson, J.L., 1960. Industrial Minerals and Rocks. The American Institute of Mining. Metalurgical and Petroleum Engineers, New York.
  • Grim, R.E., 1968. Clay Mineralogy. McGraw-Hill, 596 p.
  • Gyanen, T., Savitha, A.L., Gudi, K., 2013. Laboratory study on soil stabilization using fly ash mixtures. International Journal of Engineering Science and Innovative Technology (IJESIT). Volume 2, Issue 1.
  • Handy, R.L., Williams, N.W., 1967. Chemical stabilization of an active landslide. Civil Engineering, 37, 62-65.
  • Holm, G., Broms, B.B., 1981. Lime columns as foundation for light structures.Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 3, 687- 694.
  • Ji-ru, Z., Xing, C., 2002. Stabilization of expansive soil by lime and fly ash. Journal of Wuhan University of Technology - Materials Science Edition, 17, 73-77.
  • Jones, D.E., Holtz, W.G., 1987. The prediction and performance of structures on expansive soils. ASCE, Civil Engineering, 43, 87-89.
  • Kitsugi, K., Azakami, H., 1982. Lime-column techniques for the improvement of clay ground. Proceedings of the Symposium on recent Developments in Ground İmprovement Techniques, Bangkok, 1982, 105-115.
  • Küçükali, Ö., 2011. Kireç ve Jipsin, Üst Pliyosen Yaşlı Yüksek Plastisiteli Killerin (Ankara) Şişme ve Dayanım Özelliklerine Etkisi. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 75 s.
  • Locat, J., Berube, M.A., Choquette, M., 1990. Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Canadian Geotechnical Journal, 27, 294-304.
  • Mathew, P.K., Narasimha, R.S., 1997. Effect of lime on cation exchange capacity of marine clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123, 183-185.
  • Murray, H.H., 1991. Overview-clay mineral applications. Applied Clay Science, 5, 379- 395. Nalbantoğlu, Z., Güçbilmez, E., 2001. Improvement of calcareous expansive soils in semi-arid environments. Journal of Arid Environments, 47, 453–463.
  • Okagbue, C.O., Onyeobi, T.U.S., 1999. Potential of marble dust to stabilise red tropical soils for road construction. Engineering Geology, 53, 371–380.
  • Popescu, M.E., Constantinescu, T., Ferrando C., Quintavalle, F., 1997. Treatment of subgrade expansion soil at the extention of BucharestOtopeni International Airport. Proceedings of the International Symposium on Engineering Geology and the Environment, Athens, Greece, 331-338.
  • Singh, S. P., Roy, N. Sangita, S., 2017. Strength and hydraulic conductivity of sedimented ash deposits treated with lime column. International Journal of Geotechnical Engineering, 11, 3-15.
  • Tystovich, N.A., Abelev, M.Yu, Takhirov, I., 1971. Compacting saturated loeses soils by means of lime piles. Proceedings of the 4th Conference on Soil Mechanics, Budapest, 837-842.
  • Terashi, M., Tanaka, H., Niidome, Y., Sakanoi, H., 1980. Permeability of treated soils. Proceedings, 15th Japan Conference on Soil Mechanics and Foundation Engineering, 773-776.
  • Townsend, D.C., Kylm, T.W., 1966. Durability of lime-stabilized soils. Highway Research Board Bulletin, 139, 25-41.
  • Transportation Research Board, 1987. Lime stabilization: reaction, properties, design and construction. Committee on Lime and Lime-fly ash Stabilization, State-of-the-Art-Report, 5, Washington, D.C., 1-59.
  • Tonoz, M.C., Gokceoglu, C., Ulusay, R., 2003. A laboratory-scale experimental investigation on the performance of lime columns in expansive Ankara (Turkey) clay. Bulletin of Engineering Geology and the Environment, 62, 91–106.
  • Van Impe, W.F., 1989. Soil Improvement Techniques and Their Evolution. A.A. Balkema, Rotterdam, 125 pp.
  • Vitale, E., Deneele D., Paris, M., Russo, G., 2017. Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Applied Clay Science, 141, 36–45.
  • Yılmaz, I., Karacan, E., 1997. Geotechnical properties of alluvial soils: an example from south of Sivas (Turkey). IAEG Bulletin of the International Association of Engineering Geology, 55, 159- 165.
  • Yılmaz, I., 2007a. Mühendislik Jeolojisi – İlkeler ve Temel Kavramlar, Teknik Yayınevi, Ankara, 490 s.
  • Yılmaz, I., 2007b. The effect of swelling clays on a water transport canal between Köklüce HPP and Erbaa HPP (Turkey). Bulletin of Engineering Geology and the Environment, 66, 467-472.
  • Yılmaz, I., Civelekoğlu, B., 2009. Gypsum: An additive for stabilization for swelling clay soils. Applied Clay Science, 44, 166-172.
  • Zhu, F., Li, Z., Dong, W., Ou, Y., 2018. Geotechnical properties and microstructure of lime-stabilized silt clay. Bulletin of Engineering Geology and the Environment. Doi: 10.1007/s10064-018- 1307-5.