Bulanık mantık: Özellikleri ve süreksizlik denetimli bir şev duraysızlığına uygulanması

Bilgisayar destekli tasarım amaçlı mühendislik çalışmaları bir takım mantık sistemleri ve matematiksel modelleri gerektirir. Klasik sayısal analiz yöntemleri sadeleştirilmiş ve sınırları belirli sistemlerin çözümü için uygun olmasına karşın, karmaşık ve etkileşimli sistemlerin değerlendirilmesinde zaman zaman yetersiz kalabilmektedir. Özellikle mühendislik jeolojisinde kayaç ve zeminlerin dayanım parametrelerine bağlı sınıflandırılması ve bu parametreler kullanılarak bilgisayar ortamında gerçekleştirilecek bilgi temelli uzmanlık sistemi (knowledge-based expert systems) değerlendirmeleri için uygun nitelikte olan bulanık mantık yaklaşımı bu çalışma kapsamında incelenerek, süreksizlik denetimli bir şev duraysızlığı bulanık mantık yaklaşımı kullanılarak değerlendirilmiştir. Andezitler içerisinde gelişmiş olan kama türü şev duraysızlığnın analizi limit-denge yöntemiyle yapıldığında, güvenlik katsayısı 1.24 olarak elde edilmiş, duraysız bir şev için 1'den büyük olarak hesaplanan bu güvenlik katsayısının, şev geometrisi, süreksizlik konumları ve özellikle süreksizliklere ilişkin makaslama dayanım parametrelerinin kesin bir şekilde belirlenememesinden kaynaklandığı düşünülmüştür. Bulanık mantık yaklaşımı ile yapılan değerlendirmede ise duraylılık indeksi 0.31 olarak elde edilmiştir, Bu indeks değerine göre şevin duraylılığı "orta" derecede olup, kaymaya eğilimlidir. Bu iki sonuç karşılaştırıldığında, bulanık mantık yaklaşımının, yer yer olasılık yaklaşımlarının kullanımı gibi, klasik deterministik analiz yöntemlerini destekleyici biçimde kullanılmasının yararlı olacağı ortaya çıkmaktadır.

Fuzzy logic: Its attributes and application to a discontinuity controlled slope failure

This paper is concerned with the basic attributes of fuzzy logic, its possible application areas in engineering geology and a simple slope stability application. Some uncertainties are inherent to many engineering geological applications. In the literature, two types of uncertainty such as ignorance and variability are described. Some approaches such as fuzzy logic, probability theory etc. are used to minimize these uncertainties. The fuzzy logic, one of these techniques, is an effective tool to define some uncertainties sourced from ignorances and variabilities. Theoretically, fuzzy rules can be constructed based either on expert knowledge or on a set of observed or measured data. One of the most important stage of fuzzy logic approach is the construction of membership functions. The assumption underlying fuzzy logic theory is that the transition from membership to non-membership is seldom a step function. Rather, there is a gradual but specifiable change from membership to non-membership.In crisp set theory, a Membership function $(mu_a(x))$ has only two values (0 and 1). In this study, some membership functions defined in the literature were presented with their graphical illustrations. In order to demonstrate the strength and use of this approach, a conventional deterministic slope stability analysis incorporated with the fuzzy logic was performed and the results were discussed. A wedge failure occurred in the andesites was analyzed and the factor of safety was found as 1.24. However, it was concluded that this result did not reflect the actual condition. This was, most probably due to the uncertainties associated with the measurement of the shear strength parameters. Also, the stability index value was determined. According to the stability index value, the stability class of this slope is fair and the slope is prone to slide. When performing the fuzzy logic approach, the triangular membership functions were selected, because, a triangular membership function can be defined by a maximum, a minimum and a mode value. In classical geotechnical studies, if there is no statistically significant database, the use of fuzzy logic approach based on competent judgement can be accepted as an effective way to eliminate uncertainties. As a consequence, the fuzzy logic is attracting more and more attention in several research fields because it is able to tolerate a wide range of uncertainty.

___

  • Baecher, G.B., ve Einstein, H.H., 1978, Slope stability models in pit optimisation. International Proceedings 16 Apcom Symposium, Tucson, AZ,USA., 501-512.
  • Bortolan, G. Ve Degani, R., 1985. A review of some methods for ranking fuzzy subsets. Fuzzy Sets and Systems, 15,1-20.
  • Cagnoli, B., 1998, Fuzzy logic in volcanology. Episodes, 21 (2), 94-96.
  • Caiosso, G., DelGreco, O., ve Giani, G.P., 1987. Some probabilistic approaches to stability analysis of open pit explorations. In Proceedings of International Symposium on Engineering Geology, Beijing, China, 881-891.
  • Chowdhuty, R.N., 1986. Geomechanics risk model for multiple failures along rock discontinuities. International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts, 23 (5) 337-346.
  • Chowdhury, R.N.. ve Xu, D.W., 1995. Geotechnical system, reliability of slopes. Reliability Engineering and System Safety, 47, 141-151.
  • Deere, D.U. ve Miller, R.P., 1966,. Engineering Classification and Index Properties of Intact Rock. U.S. Air Force Laboratory, Technical Report No.AFNL-TR-65-116, Albuquerque, N.M.
  • Dimitru, V. ve Luban, F., 1986. On some optimisation problems under uncertainty. Fuzzy Sets and Systems, 18, 257-272.
  • Di Nola, A., Sessa, S., Pedrycz, W., ve Sanchez, E,, 1989. Fuzzy Relation Equations and Their Applications Knowledge Engineering. Kluver Academic Publishers, London, 278s.
  • Dombi, J., 1990. Membership function as an evaluation. Fuzzy Sets and Systems., 35, 1-21.
  • Ercanoğlu, M., 1997. Altındağ (Ankara) yerleşim bölgesindeki andezitlerde olası şev duraysızlık modellerinin incelenmesi ve duraysızlık haritasının oluşturulması. Yük. Müh. Tezi, Hacettepe Üniversitesi, Ankara, 83 s.(yayınlanmamış).
  • Gopal, S. ve Woodcock, C., 1994. Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogrammetric Engineering and Remote Sensing. 60 (2), 181-188.
  • Gökçeoğlu, C., 1997. Killi, yoğun süreksizlik içeren ve zayıf kaya kütlelerinin mühendislik sınıflamalarında karşılaşılan güçlüklerin giderilmesine yönelik yaklaşımlar. Doktora Tezi, Hacettepe Üniversitesi, Ankara, 214s.(yayınlanmamış).
  • Gökçeoğlu, C., Sönmez, H. ve Ercanoğlu, M.,, 2000. Discontinuity controlled probabilistic slope failure risk maps of the Altındağ (settlement) region in Turkey. Engineering Geology, 55, 277-296.
  • Grima, M.A. ve Babuska, R., 1999. Fuzzy model for the prediction of unconfined compressive strength of rock samples. International Journal of Rock Mechanics and Mining Science, 36, 339-349.
  • Grima, M.A. ve Verhoef, N.W., 1997, Forecasting of rock trencher performance using a fozzy logic approach. International Journal of Rock Mechanics and Mining Science, 34 (3-4), 707.
  • Hammah, R.E. ve Curran, J.H., 1996, Optimal delineation of joint sets using: a fuzzy clustering algorithm. International Journal of Rock Mechanics, and Mining Science, 35 (4-5), 495-496.
  • Heshmaty, B. ve Kandel, A., 1985. Fuzzy linear regression and its application to forecasting in uncertain environment Fuzzy Sets and Systems, 15, 159-182.
  • Hoek, E. ve Bray, J., 1981. Rock Slope Engineering. Inst. Min. Metal., London, 353s.
  • Hoerger, S.F., ve Young, D.S., 1987. Predicting local rock mass behavior using geostatistics. In Proceedings of 28th Symposium in Rock Mechanics, Rotterdam, Balkema, 99-106.
  • Juang, C.H., Lee, D.H. ve Sheu, C., 1992. Mapping slope failure potential using fuzzy sets. Journal of Geotechnical Engineering, 118 (3), 475-494.
  • Juang, C.H., Jhi, Y.Y. ve Lee, D.H., 1998. Stability analysis of existing slopes considering uncertainly. Engineering Geology, 49, 111-122.
  • Kalamaras, G.S., 1997. A computer based system for supporting decisions for tunneling in rock under conditions of uncertainty. International Journal of Rock Mechanics and Mining Science, 34 (3-4), 588.
  • Kaufmann, A. ve Gupta, M.M., 1988. Fuzzy Mathematical Models In Engineering and Management Science, North-Holland Book Co., Amsterdam, 338s.
  • Krusinska, E. ve Liebhart, A., 1986. A note on the precision of linguistic variables for differentiating between some respiratory diseases. Fuzzy Sets and. Systems, 18, 131-142.
  • Lee, C.F., Wang, S. ve Huang, Z., 1999. Evaluation of susceptibility of laminated rock to bending-toppling deformation and its application to slope stability study for the Longtan Hydropower Project on the Red. Water River, Guangxi, China. Proceedings of 9th International Congress on Rock Mechanics, Paris, Eds., G. Vouille ve P. Berest, A.A.Balkema, 119-122.
  • Leventhal, A.R., Barker, C.S. ve Ambrosis, L.P., 1992. Malanjkhve copper project-overview of the geotechnical investigation for optimum mining exploration. Regional Symposium on Rock Slopes, India, 69-78.
  • Marek, J.M. ve Savely, J.P., 1978. Probabilistic analysis of plane shear failure mode. International Proceedings of 19 th US Symposium, on Rock Mechanics, 40-44.
  • Matternicht, G., 1999. Change detection assessment using fuzzy sets and remotely sensed data: an application of topographic map revision. ISPRS Journal of Photogrammetry and Remote Sensing. 54,221-233.
  • Miller, S.M., 1983. A statistical method to evaluate homogenity of structural populations. Mathematical Geology, 15(2), 317-328.
  • Moore, D.S., 1997. Statistics, Concepts and Controversies. W.H. Freeman and Co., New York, 526s.
  • Nguyen, V.U., 1985. Some fuzzy set applications in mining geomechanics. International Journal of Rock Mechanics and Mining Science and Geomechanic Abstracts, 22 (6), 369-379.
  • Sakurai, S. ve Shimizu, N., 1987. Assessment of rock slope stability by fuzzy set theory. ISRM Symposium on Rock Mechanics, A.A. Balkema, 503-506.
  • Svarovski S.G., 1987. Usage of linguistic variable concept for human operator modelling. Fuzzy Sets and Systems, 22,107-114.
  • Wang, F., 1990. Improving remote sensing image analysis through fuzzy information representation. Pbotogrammetric Engineering and Remote Sensing. 56 (8), 1163-1169.
  • Yao, J. ve Faruta, H., 1986. Probabilistic, treatment of fuzzy events in civil engineering. Journal of Probabilistic Engineering Mechanics, 1(1), 58-64.
  • Zadeh, L.A., 1965. Fuzzy sets. Information and Control, 8, 338-353.
  • Zadeh, L.A., 1971. Quantitative fuzzy semantics. Information of Science, 3, 159-176.
  • Zadeh, L.A., 1984. Making computers think like people, IEEE Spectrum, 8, 26-32.
  • Zettler, A.H., Poisel, R., Lakovits, D. ve Kastner, W., 1996. Control system for tunnel boring machines (IBM): A first investigation towards a hybrid control system, International Journal of Rock Mechanics and Mining Science,, 35 (4- 5), 674.
  • Zimmerman, H.J., 1978. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1,44-55. Geological Engineering 25 (1) 2001