Jeopolitik Risk Endeksi ve Askeri Harcamalar Arasındaki İlişkiler: Kulüp Yakınsama Analizinden Kanıtlar

Bu çalışma, 1993-2021 dönemi için 41 ülke üzerinde gerçekleştirilen analizle ülkelerin jeopolitik risk endeksleri ile askeri harcamaları arasında pozitif yönlü bir ilişkiyi araştırmaktadır. Çalışmanın temel amacı, yüksek jeopolitik riskin yüksek askeri harcamalara neden olacağı hipotezini test etmektir. Analizde Phillips ve Sul, (2007, 2009) kulüp yakınsama yöntemi kullanılarak, jeopolitik risk endeksi ve askeri harcamalar değişkenleri temelinde birbirine yakınsayan ülkeler gruplandırılmaktadır. Analiz sonuçlarına göre jeopolitik risk endeksi açısından 5 Kulüp ve askeri harcamalar açısından 4 Kulüp oluşmaktadır. En yüksek jeopolitik risk endeksine sahip ülkeler İngiltere, Rusya ve ABD iken en yüksek askeri harcamayı yapan ülkeler ABD, Rusya, Ukrayna, İsrail, Güney Kore, Meksika, Kolombiya ve Tunus'tur. En düşük jeopolitik risk endeksine sahip Şili, Peru ve Portekiz askeri harcamalar kategorisinde Kulüp 2 ve Kulüp 3’te kümelenmektedir. Jeopolitik risk endeksi ve askeri harcamalar kategorisinde ortak kulüplerde çakışan ülkeler Kulüp 1’de Rusya ve ABD; Kulüp 2’de Çin ve Fransa; Kulüp 3’te Almanya, Japonya, İtalya, Mısır ve Kulüp 4’te Venezuela, Arjantin, Filipinler, Güney Afrika, İsviçre, Endonezya ve Malezya’dır. Çakışan 15 ülkenin bulguları, jeopolitik risk endeksi yakınsayan ülkelerin askeri harcama miktarları da aynı kulüpte yakınsayarak bir nedensellik oluşturduğu değerlendirmesini sağlamaktadır. Ancak ampirik bulgular yüksek jeopolitik riskliliğin askeri harcamalar üzerindeki etkileri açısından ülkeler arasında farklılıklar olduğunu kanıtlamaktadır.

The Relationship Between The Geopolitical Risk Index And Military Expenditures: Proof From The Club Convergence Analysis

This study examines the positive relationship between geopolitical risk indices and military expenditures of countries based on an analysis conducted on 41 countries for the period of 1993-2021. The main objective of the study is to test the hypothesis that high geopolitical risk leads to high military expenditures. The countries that converge to each other on the basis of geopolitical risk index and military expenditure variables are grouped by using the Phillips ve Sul (2007, 2009) club convergence method. According to the analysis results, 5 Clubs in terms of geopolitical risk index and 4 Clubs in terms of military expenditures are being formed. While the countries with the highest geopolitical risk index are the United Kingdom, Russia, and the United States, the countries with the highest military expenditures are the United States, Russia, Ukraine, Israel, South Korea, Mexico, Colombia, and Tunisia. Chile, Peru, and Portugal, which have the lowest geopolitical risk index, are clustered in Club 2 and Club 3 in the military expenditures category. The countries that overlap in the common clubs in terms of geopolitical risk index and military expenditure categories are Russia and the United States in Club 1, China and France in Club 2, Germany, Japan, Italy, and Egypt in Club 3, and Venezuela, Argentina, Philippines, South Africa, Switzerland, Indonesia, and Malaysia in Club 4. The findings of the overlapping 15 countries provide the assessment that the military expenditure volumes of the countries whose geopolitical risk indices are converging are also converging within the same club, leading to a casualty. However, the empirical findings prove that there are differences among the countries in terms of the effects of high geopolitical risk on military expenditures.

___

  • Aizenman, Joshua, and Reuven Glick. 2006. “Military Expenditure, Threats and Growth.” Journal of International Trade and Economic Development 15 (2): 129–55. doi:10.1080/09638190600689095.
  • Apergis, Emmanuel, and Nicholas Apergis. 2016. “The 11/13 Paris Terrorist Attacks and Stock Prices: The Case of The International Defense Industry.” Finance Research Letters 17 (May). Elsevier Ltd: 186–92. doi: 10.1016/j.frl.2016.03.002.
  • Apergis, Nicholas, Matteo Bonato, Rangan Gupta, and Clement Kyei. 2018. “Does Geopolitical Risks Predict Stock Returns and Volatility of Leading Defense Companies? Evidence from a Nonparametric Approach.” Defence and Peace Economics 29 (6). Routledge: 684–96. doi:10.1080/10242694.2017.1292097.
  • Apergis, Nicholas, and Arusha Cooray. 2016. “Old Wine in A New Bottle: Trade Openness and FDI Flows-Are The Emerging Economies Converging?” Contemporary Economic Policy 34 (2): 336–51. doi:10.1111/coep.
  • Apergis, Nicholas, and James E. Payne. 2017. “Per Capita Carbon Dioxide Emissions Across U.S. States by Sector and Fossil Fuel Source: Evidence from Club Convergence Tests.” Energy Economics 63 (March). Elsevier B.V.: 365–72. doi: 10.1016/j.eneco.2016.11.027.
  • Benoit, Emile. 1978. “Growth and Defense in Developing Countries.” Economic Development and Cultural Change 26 (2): 271–80. https://about.jstor.org/terms.
  • Brumm, Harold J. 1997. “Military Spending, Government Disarray, and Economic Growth: A Cross-Country Empirical Analysis.” Journal of Macroeconomics 19 (4): 827–38.
  • Buzdağlı, Özge, and Dilek Özdemir. 2021. “Jeopolitik Risk Endeksinin Askeri Harcamalar Üzerindeki Etkisi.” Süleyman Demirel Üniversitesi Vizyoner Dergisi 12 (29). Suleyman Demirel University Visionary Journal: 188–203. doi:10.21076/vizyoner.761633.
  • Caldara, Dario, and Matteo Iacoviello. 2018. “Measuring Geopolitical Risk.” International Finance Discussion Paper 2018 (1222): 1–66. doi:10.17016/IFDP.2018.1222.
  • Chiminya, Adonia., J. Paul. Dunne, and Eftychia. Nikolaidou. 2018. “Military Spending, Conflict and External Debt in SSA.” 2018–01.
  • Collier, Paul. 2006. “War and Military Expenditure in Developing Countries and Their Consequences for Development.” Vol. 1. www.epsjournal.org.uk.
  • Dedeoğlu, Melike, and Zerrin Kılıçarslan. 2020. “OECD Ülkelerinde Ticari Açıklık Yakınsaması: Phillips-Sul Kulüp Yakınsama Analizi.” Turkish Studies-Economics, Finance, Politics Volume 15 Issue 1 (Volume 15 Issue 1). International Balkan University: 277–88. doi:10.29228/turkishstudies.40506.
  • Deger, Saadet, and Somnath Sen. 1983. “Military Expenditure, Spin-off and Economic Development.” Journal of Development Economics 13: 67–83.
  • Dunne, J. Paul., Ron P. Smith, and Dirk. Willenbockel. 2005. “Models of Military Expenditure and Growth: A Critical Review.” Defence and Peace Economics 16 (6): 449–61. doi:10.1080/10242690500167791.
  • Dunne, J. Paul, and Nan Tian. 2013. “Military Expenditure and Economic Growth: A Survey.” The Economics of Peace and Security Journal 8 (1): 5–11. www.epsjournal.org.uk.
  • Gómez-Trueba Santamaría, Paula, Alfredo Arahuetes García, and Tomás Curto González. 2021. “A Tale of Five Stories: Defence Spending and Economic Growth in NATO´s Countries.” Plos One 16 (1). NLM (Medline): 1–22. doi: 10.1371/journal.pone.0245260.
  • Heo, Uk, and John Bohte. 2012. “Who Pays for National Defense? Financing Defense Programs in the United States, 1947-2007.” Journal of Conflict Resolution 56 (3): 413–38. doi:10.1177/0022002711420969.
  • Martin, Victor, and Guillermo Vazquez. 2015. “Club Convergence in Latin America.” B.E. Journal of Macroeconomics 15 (2). Walter de Gruyter GmbH: 791–820. doi:10.1515/bejm-2014-0109.
  • Nikolaidou, Eftychia. 2008. “The Demand for Military Expenditure: Evidence from The EU15 (1961-2005).” Defence and Peace Economics 19 (4): 273–92. doi:10.1080/10242690802166533.
  • Odehnal, Jakub, and Jiří Neubauer. 2020. “Economic, Security, and Political Determinants of Military Spending in NATO Countries.” Defence and Peace Economics 31 (5). Routledge: 517–31. doi:10.1080/10242694.2018.1544440.
  • Phillips, Peter C.B., and Donggyu Sul. 2007. “Transition Modeling and Econometric Convergence Tests.” Econometrica 75 (6): 1771–1855. doi:10.1111/j.1468-0262.2007.00811.x.
  • ———. 2009. “Economic Transition and Growth.” Journal of Applied Econometrics 24 (7): 1153–85. doi:10.1002/jae.1080.
  • Saba, Charles Shaaba. 2021. “Convergence and Transition Paths in Transportation: Fresh Insights from A Club Clustering Algorithm.” Transport Policy 112 (October). Elsevier Ltd: 80–93. doi: 10.1016/j.tranpol.2021.08.008.
  • Saba, Charles Shaaba, and Oladipo Olalekan David. 2020. “Convergence Patterns in Global ICT: Fresh Insights from A Club Clustering Algorithm.” Telecommunications Policy 44 (10). Elsevier Ltd: 1–28. doi: 10.1016/j.telpol.2020.102010.
  • Saba, Charles Shaaba, and Nicholas Ngepah. 2020. “Empirical Analysis of Military Expenditure and Industrialisation Nexus: A Regional Approach for Africa.” International Economic Journal 34 (1). Routledge: 58–84. doi:10.1080/10168737.2019.1641541.
  • Seyidoğlu, Halil. 2013. Uluslararası İktisat: Teori, Toplitika ve Uygulama. 19th ed. İstanbul: Güzem Can Yayınları.
  • Sokhatsky, Oleksandr. 2020. “The Military Expenditures in The Conditions of Growing Geopolitical Risks and Changes in The Nature of International Conflicts.” World of Finance 3 (64). Ternopil National Economic University: 98–113. doi:10.35774/sf2020.03.098.
  • Soybilgen, Barış, Huseyin Kaya, and Dincer Dedeoglu. 2019. “Evaluating The Effect of Geopolitical Risks on The Growth Rates of Emerging Countries.” Economics Bulletin 39 (1): 717–25.
  • Thompson, Earl A. 1974. “Taxation and National Defense.” Journal of Political Economy 82 (4): 755–82. https://www.jstor.org/stable/1837144.
  • Ulucak, Recep, and Nicholas Apergis. 2018. “Does Convergence Really Matter for The Environment? An Application Based on Club Convergence and on The Ecological Footprint Concept for The EU Countries.” Environmental Science and Policy 80 (February). Elsevier Ltd: 21–27. doi: 10.1016/j.envsci.2017.11.002.
  • Yakovlev, Pavel. 2007. “Arms Trade, Military Spending, and Economic Growth.” Defence and Peace Economics 18 (4): 317–38. doi:10.1080/10242690601099679.
  • Zhang, Zhengyong, Elie Bouri, Tony Klein, and Naji Jalkh. 2022. “Geopolitical Risk and The Returns and Volatility of Global Defense Companies: A New Race to Arms?” International Review of Financial Analysis 83 (102327). Elsevier Inc.: 1–21. doi: 10.1016/j.irfa.2022.102327.