KOAH Hastalarında Endotel Disfonksiyonu ve Sistemik İnflamasyon Belirteçleri Olarak Serum Endokan ve sICAM-1 Düzeylerinin Değerlendirilmesi ve Bunların Komorbiditelerle Olan İlişkisi

Amaç: Kronik obstrüktif akciğer hastalığı (KOAH) birçok komorbiditenin eşlik ettiği ve sistemik etkileri olan bir hastalıktır. Sistemik inflamasyon ve endotel disfonksiyonu KOAH’da komorbidite görülme sıklığını arttırmaktadır. Endokan ve hücreler arası adezyon molekülü 1(ICAM-1) endotel disfonksiyonu ve sistemik inflamasyonu belirlemede belirteç olarak kullanılabilir. Biz de çalışmamızda, KOAH hastalarında endokan ve ICAM-1 düzeyi ile endotel disfonksiyonu ve sistemik inflamasyonu değerlendirmeyi ve komorbiditelerin bu belirteçlerle olan ilişkisini değerlendirmeyi amaçladık. Yöntem: Çalışmamıza Mayıs 2018-Mayıs 2019 tarihleri arasında Göğüs Hastalıkları Polikliniğine başvuran KOAH hastaları ve kontrol grubu alındı. Tüm olguların demografik verileri, komorbiditeleri, zorlu vital kapasite (FVC) %, zorlu ekspiratuvar volüm birinci saniye (FEV1) % ve FEV1/FVC parametreleri ve Modified Medical Research Council (mMRC) dispne skalası skorları ile KOAH olgularının KOAH değerlendirme anketi (CAT) skorları kaydedildi. KOAH hastaları komorbiditesi olan ve olmayanlar olarak 2 gruba ayrıldı. KOAH hastaları ayrıca GOLD sınıflamasına göre A’dan D’ye 4 gruba ayrıldı. Endokan ve soluble ICAM-1 (sICAM-1) düzeyleri serumda ELISA yöntemiyle ölçüldü. Bulgular: KOAH grubunda endokan ve sICAM-1 değerleri daha yüksekti (p değerleri sırasıyla

Assessment of Serum Endocan and sICAM-1 Levels as Markers of Endothelial Dysfunction and Systemic Inflammation and Their Relationship with Comorbidities in COPD Patients

Objective: Chronic obstructive pulmonary disease (COPD) has systemic effects and is accompanied by numerous comorbidities. Systemic inflammation and endothelial dysfunction increase the incidence of comorbidities in COPD. Endocan andIntercellular Adhesion Molecule-1 (ICAM-1) can be used as indicators for determining endothelial dysfunction and systemic inflammation. We aimed to investigate endothelial dysfunction and systemic inflammation using endocan andsICAM-1 levels and determine associations of these indicators with comorbidities in COPD patients.Method: COPD patients who presented to Outpatient Chest Diseases Clinic between May 2018 and May 2019 and acontrol group were included in the study. Demographic data, comorbidities, forced vital capacity (FVC)%, forced expiratoryvolume in 1-second (FEV1)%, and FEV1/FVC, Modified Medical Research Council (mMRC) dyspnea scores, and COPDassessment-questionnaire (CAT) scores of COPD patients were recorded. COPD patients were divided into two groups asthose with/without comorbidities. Besides, they were classified into four groups (A-D) according to the GOLD (GlobalInitiative for Obstructive Lung Disease) classification. Serum endocan and soluble ICAM-1 (sICAM-1) levels were measuredby the ELISA method.Results: Endocan and sICAM-1 levels of the COPD group were higher (p

___

  • 1. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017. Available from: http://goldcopd.org.
  • 2. Okutan O, Ayten Ö. Kronik obstrüktif akciğer hastalığı ve komorbiditeler. Solunum 2012;14(3):182-3. https://doi.org/10.5505/solunum.2012.36024
  • 3. Kechagia M, Papassotiriou I, Gourgoulianis KI. Endocan and the respiratory system: a review. Int J Chron Obstruct Pulmon Dis. 2016;11:3179-87.
  • https://doi.org/10.2147/COPD.S118692 4. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity inflammation and autoimmunity. J Autoimmun 2010;34:258-65. https://doi.org/10.1016/j.jaut.2009.12.003
  • 5. Hillas G, Perlikos F, Tsiligianni I, Tzanakis N. Managing comorbidites in COPD. Int J Chron Obstruct Pulmon Dis 2015;10:95-109. https://doi.org/10.2147/COPD.S54473
  • 6. Dursunoğlu N, Köktürk N, Baha A, et al. Turkish Thoracic Society-COPD Comorbidity Group. Comorbities and their impact on chronic obstructive pulmonary disease. Tuberk Toraks 2016;64:292-301. https://doi.org/10.5578/tt.2245
  • 7. Béchard D, Scherpereel A, Hammad H, et al. Human endothelial-cell specific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesion molecule-1. J Immunol 2001;167(6):3099-106.
  • https://doi.org/10.4049/jimmunol.167.6.3099 8. Mikkelsen ME, Shah CV, Scherpereel A, et al. Lower serum endocan levels are associated with the development of acute lung injury after major trauma. J Crit Care 2012;27(5):522. https://doi.org/10.1016/j.jcrc.2011.07.077
  • 9. Tang L, Zhao Y, Wang D, et al. Endocan levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Mediators Inflamm 2014;2014:625180. https://doi.org/10.1155/2014/625180
  • 10. Grigoriu BD, Depontieu F, Scherpereel A, et al. Endocan expression and relationship with survival in human nonsmall cell lung cancer. Clin Cancer Res 2006;12(15):4575- 82. https://doi.org/10.1158/1078-0432.CCR-06-0185
  • 11. Kao SJ, Chuang CY, Tang CH, et al. Plasma endothelial cell-specific molecule-1 (ESM-1) in management of community-acquired pneumonia. Clin Chem Lab Med. 2014;52(3):445-51. https://doi.org/10.1515/cclm-2013-0638
  • 12. Güzel A, Duran L, Köksal N, et al. Evaluation of serum endothelial cell specific molecule-1 (endocan) levels as a biomarker in patients with pulmonary thromboembolism. Blood Coagul Fibrinolysis 2014;25(3):272-6. https://doi.org/10.1097/MBC.0000000000000071
  • 13. Kechagia M, Michalakakou K, Griniouk K, et al. Serum endocan levels in patients with chronic obstructive pulmonary disease: a potential role in the evaluation of susceptibility to exacerbation. Clin Chem Lab Med. 2018;56(12):e295-e297. https://doi.org/10.1515/cclm-2018-0331
  • 14. Dai L, He J, Chen J, et al. The association of elevated circulating endocan levels with lung function decline in COPD patients. Int J Chron Obstruct Pulmon Dis. 2018;13:3699-706. https://doi.org/10.2147/COPD.S175461
  • 15. Pihtili A, Bingol Z, Kiyan E. Serum endocan levels in patients with stable COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3367-72. https://doi.org/10.2147/COPD.S182731
  • 16. Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK. Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology 2014;19(4):508-13. https://doi.org/10.1111/resp.12285
  • 17. Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013;123(2):540-1. https://doi.org/10.1172/JCI66843
  • 18. Rahman A, Fazal F. Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal. 2009;11:823-39. https://doi.org/10.1089/ars.2008.2204
  • 19. Aaron CP, Schwartz JE, Bielinski SJ, Hoffman, et al. Intercellular adhesion molecule 1 and progression of percent emphysema: The MESA Lung Study. Respir. Med. 2015;109:255-64. https://doi.org/10.1016/j.rmed.2014.10.004
  • 20. Kotteas EA, Boulas P, Gkiozos I, Tsagkouli S, Tsoukalas G, Syrigos KN. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis. Anticancer Res. 2014;34(9):4665- 72.
  • 21. Okuda R, Matsushima H, Aoshiba K, et al. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis. Springerplus 2015;4:657. https://doi.org/10.1186/s40064-015-1455-z
  • 22. Blidberg K, Palmberg L, James A, et al. Adhesion molecules in subjects with COPD and healthy nonsmokers: a cross sectional parallel group study. Respir Res 2013;14: 47 https://doi.org/10.1186/1465-9921-14-47
  • 23. Noguera A, Busquets X, Sauleda J, Villaverde JM, MacNee W, Agusti AG. Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158:1664-8. https://doi.org/10.1164/ajrccm.158.5.9712092
  • 24. Walter RE, Wilk JB, Larson MG, et al. Systemic inflammation and COPD: the Framingham Heart Study. Chest 2008;133:19-25. https://doi.org/10.1378/chest.07-0058 25. Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. Eur Respir J 2005;26:153- 61. https://doi.org/10.1183/09031936.05.00034505 26. Donaldson GC, Seemungal TA, Patel IS, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 2005;128(4):1995-2004.https://doi.org/10.1378/chest.128.4.1995 27. Agustí A, Faner R. Systemic inflammation and comorbidities in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2012;9(2):43-6. https://doi.org/10.1513/pats.201108-050MS 28. Wanner A, Mendes ES. Airway endothelial dysfunction in asthma and chronic obstructive pulmonary disease: a challenge for future research. Am J Respir Crit Care Med. 2010;182(11):1344-51. https://doi.org/10.1164/rccm.201001-0038PP 29. Yang Q, Underwood MJ, Hsin MK, Liu XC, He GW. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease: basic considerations for future drug development. Curr Drug Metab. 2008; 9(7):661-77. https://doi.org/10.2174/138920008785821684 30. Ji M, Wang Y, Li X, Qian Z. Up-regulation of ICAM1mRNA and IL-1βmRNA in lung tissues of a rat model of COPD. Int J Clin Exp Med. 2015; 8(11):21956-63