COVID-19 Pandemisinin Etkisiyle Birlikte İstanbul’da Son Beş Yılın Hava Kirliliği Değerlendirilmesi

Amaç: Partikül madde, kükürt dioksit, ozon ve nitrojen oksit bileşikleri temel hava kirleticileridir. Bu makalede İstanbul’un 5 yıllık hava kalitesi değerlendirmesi ve pandemi nedeniyle uygulanan fiziki hareket kısıtlamalarının kirleticiler üzerine olan etkisinin araştırılması amaçlanmıştır. Yöntem: Araştırmada Ulusal Hava Kalitesi İzleme Ağı’nın kamuoyuna açık verileri kullanıldı. 2016-2020 yılları arasında İstanbul’da trafik yoğunluğunun neden olduğu temel kirleticiler olan partikül madde ve nitrojen bileşikleri analiz edildi. Bir yıl içinde ölçüm yapabildiği gün sayısı yüzdesi %75 ve üzeri değere ulaşan istasyonların verileri kullanıldı. Araştırmaya temel olan günlük PM10, NO2ve NOxkirleticilerinin, 2016 yılından 2020 yılına dek 5 yıllık ölçüm verileri, İstanbul ili sınırları içerisinde ölçüm yapabilen tüm istasyonlarda 24 saatlik ortalamalar temel alınarak değerlendirildi. COVID-19 pandemisi nedeniyle 2020 yılı Nisan ve Mayıs aylarında gerçekleşen fiziki hareketliliği kısıtlama uygulamaları günlerindeki kirletici düzeyleri, her bir istasyon özelinde, 2019 ve 2020 yılları kıyaslanarak ayrıca değerlendirildi. Bulgular: 2016-2018 yılları arasında 12, 2019 ve 2020 yıllarında 39 adet istasyonda partikül madde ve nitrojen oksit bileşikleri ölçümü yapıldığı; bir yıl içinde ölçüm yapabildiği gün sayısı yüzdesi %75 ve üzeri değere ulaşan istasyon sayısının 9 adet olduğu tespit edildi. Son beş yıllık kirletici ölçümleri değerlendirildiğinde; araştırmaya dahil edilen 9 istasyonun tamamında, PM10, NO2ve NOxkirletici ölçümlerinin, Dünya Sağlık Örgütü’nün belirlediği sınır değerleri aştığı saptandı. COVID-19 kapsamında 2020 yılında uygulamaya konulan iki günlük fiziki hareket kısıtlamalarının kirleticiler üzerinde olumlu bir etkisi izlenmedi. Ancak 23-26 Nisan, 1-3 Mayıs ve 23-26 Mayıs tarihlerinde gerçekleştirilen kapanma dönemlerinde partikül madde, nitrojen oksit ve nitrojen dioksit konsantrasyonlarında sırasıyla ortalama %33,4, %59,6 ve %52,6 oranında düşüş saptandı. Sonuç: İstanbul’daki hava kirliliği beş yıllık dönemde anlamlı ve belirgin bir azalma göstermemiştir. Son yıllarda özellikle trafik kirliliğini ölçmede yetersizlik mevcuttur. COVID-19 önlemleri çerçevesinde uygulamaya konulan iki günden uzun süreli ve etkili fiziki hareket kısıtlamaları hava kirleticilerinin konsantrasyonunda belirgin düşüşe yol açtığı tespit edilmiştir.

Five-Year Analysis of Air Pollution in Istanbul Including Also the Impact of the COVID-19 Pandemic

Objective: Particulate matter, sulfur dioxide, ozone, and nitrogen oxide compounds are the main air pollutants. The purpose of this research is to analyze the five-year air quality of Istanbul and examine the effect of movement restrictions due to the COVID-19 pandemic on pollutants. Method: The public data of the National Air Quality Observation Network has been utilized. The research has been conducted based on the five-year daily averages of PM10, NO2 , and NOxpollutants for Istanbul between 2016-2020. The data of stations which measured for 75% and more throughout the year has been used. The effect of lockdowns enforced due to COVID-19 was revealed by comparing data of pollutants from April and May of 2020 to the same period in 2019. Results: There were 12 stations between 2016-2018, and 39 stations in 2019 and 2020 which measured particulate matter and nitrogen oxide compounds. Only 9 stations reached the standard of measuring pollution for 75% and more throughout the year. The PM10, NO2 , and NOx levels measured by all the 9 stations between 2016-2020 are above the limit values set by the World Health Organization (WHO). The lockdowns in 2020 have not been helping improvements in air pollution issue. However, there have been regressions of 33.4%, 59.6%, and 52.6% in the overall average particulate matter, nitrogen oxide, and nitrogen dioxide concentrations during the lockdowns between 23-26 of April, 1-3 of May, and 23-26 of May, respectively. Conclusion: The air pollution issue in Istanbul has not improved in a meaningful and significant manner for the last five years. There is a significant deficiency in measuring traffic pollution. It has been found that two days long lockdowns and physical movement restrictions due to COVID-19 have significantly contributed to a significant regression in the overall concentration of air pollutants.

___

  • 1. Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, et al, Brunekreef B. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J. 2017 Jan 11;49(1):1600419 https://doi.org/10.1183/13993003.00419-2016
  • 2. International Agency for Research on Cancer, ‘Outdoor air pollution a leading environmental cause of cancer deaths’, Press release No 221, 2013. https://www.iarc. fr/news-events/iarc-outdoorair-pollution-a-leadingenvironmental-cause-of-cancerdeaths/
  • 3. Katsouyanni K, Touloumi G, Samoli E, Gryparis A, Le Tertre A, Monopolis Y, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology. 2001 Sep;12(5):521-31. https://doi.org/10.1097/00001648-200109000-00011
  • 4. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, AdairRohani H, et. al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2224-60.
  • 5. Yu JZ, Huang XH, Ho SS, Bian Q. Nonpolar organic compounds in fine particles: Quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong. Anal Bioanal Chem 2011;401(10):3125-39. https://doi.org/10.1007/s00216-011-5458-5
  • 6. Dockery DW, Stone PH. Cardiovascular risks from fine particulate air pollution. N Engl J Med. 2007;356:511-3. https://doi.org/10.1056/NEJMe068274
  • 7. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010 Jun 1;121(21):2331- 78. https://doi.org/10.1161/CIR.0b013e3181dbece1
  • 8. Nazarenko Y, Pal D, Ariya PA. Air quality standards for the concentration of particulate matter 2.5, global descriptive analysis. Bull World Health Organ 2021;99:125-37. https://doi.org/10.2471/BLT.19.245704
  • 9. Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F, et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ Health Perspect. 2008 Nov;116(11):1480-6. https://doi.org/10.1289/ehp.11345
  • 10. The United States Environment Protection Agency. Basic Information about NO2. https://www.epa.gov/no2- pollution/basic-information-about-no2#What%20is%20 NO2
  • 11. Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliği (Translated title: Air Quality Assessment and Management Regulation) https://www.mevzuat.gov.tr/mevzuat?Mev zuatNo=12188&MevzuatTur=7&MevzuatTertip=5
  • 12. European Environment Agency. Air Quality e-Reporting products on EEA data service. 2018. https://ftp.eea. europa.eu/www/aqereporting-3/AQeReporting_ products_2018_v1.pdf (Accessed on 07.05.2021)
  • 13. World Health Organization. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. https://apps.who.int/iris/ bitstream/handle/10665/69477/WHO_SDE_PHE_ OEH_06.02_eng.pdf ?sequence=1 (Accessed on 07.05.2021)
  • 14. Republic of Turkey, Governorship of Istanbul. The City of Universities: Istanbul. 2019. http://en.istanbul.gov.tr/ the-city-of-universities-istanbul (Accessed on 20.02.2021).
  • 15. IMM Open Data Portal. https://data.ibb.gov.tr/ (Accessed on 07.04.2021).
  • 16. Greater London Authority. Air Pollution monitoring data in London: 2016 to 2020. February 2020. https://www. london.gov.uk/sites/default/files/air_pollution_ monitoring_data_in_london_2016_to_2020_feb2020. pdf
  • 17. Tokyo Metropolitan Government/ Bureau of Environment. Air quality Monitoring. https://www.kankyo.metro. tokyo.lg.jp/en/automobile/monitoring.html
  • 18. New York State Department of Environmental Conservation. Air Quailty Montoring. https://www.dec. ny.gov/chemcal/8406.html
  • 19. European Environment Agency. Air Quality in Europe Report 2020. https://www.eea.europa.eu/publications/ air-quality-in-europe-2020-report
  • 20. Union of Chambers of Turkish Engineers and Architechts (UCTEA)/ Chamber of Environmental Engineers. Hava Kirliliği Raporu 2019. (Translated title: Air Pollution Report 2019). https://www.tmmob.org.tr/sites/default/ files/2019.pdf (Accessed on 20.04.2021).
  • 21. Pala K, Aykac N, Yasin Y. Premature deaths attributable to long-term exposure to PM2.5 in Turkey. Environ Sci Pollut Res 2021. https://doi.org/10.1007/s11356-021-13923-5
  • 22. Çapraz Ö, Deniz A, Doğan N. Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015. Chemosphere 2017;181:544-50. https://doi.org/10.1016/j.chemosphere.2017.04.105
  • 23. Mentese S, Bakar C, Mirici NA, Oymak S, Otkun MT. Associations between respiratory health and ambient air quality in Canakkale, Turkey: a long-term cohort study. Environ Sci Pollut Res Int 2018;25(13):12915-3. https://doi.org/10.1007/s11356-018-1307-9
  • 24. Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, Gog JR, Edmunds WJ; CMMID COVID-19 working group. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis. 2020 Oct;20(10):1151- 60. https://doi.org/10.1101/2020.04.23.20077024
  • 25. Di Domenico L, Pullano G, Sabbatini CE, Boelle Py, Colizza V. Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC Med 18, 240 (2020). https://doi.org/10.1186/s12916-020-01698-4
  • 26. Dawoud D. Emerging from the other end: Key measures for a successful COVID-19 lockdown exit strategy and the potential contribution of pharmacists. Res Social Adm Pharm 2021;17(1):1950-3. https://doi.org/10.1016/j.sapharm.2020.05.011
  • 27. Liu Y, Morgenstern C, Kelly J, Lowe R. The impact of nonpharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med 19, 40 (2021). https://doi.org/10.1186/s12916-020-01872-8
  • 28. State of Global Air 2020. A global report card on air pollution exposures and their impacts on human health. https://www.stateofglobalair.org/resources (Accessed on 23.04.2021)
  • 29. Dutheil F, Baker JS, Navel V. COVID-19 as a factor influencing air pollution? Environ Pollut 2020;263(Pt A):114466. https://doi.org/10.1016/j.envpol.2020.114466
  • 30. Hörmann S, Jammoul F, Kuenzer T, Stadlober E. Separating the impact of gradual lockdown measures on air pollutants from seasonal variability. Atmos Pollut Res 2021;12(2):84- 92. https://doi.org/10.1016/j.apr.2020.10.011
  • 31. Hashim BM, Al-Naseri SK, Al-Maliki A, Al-Ansari N. Impact of COVID-19 lockdown on NO2 , O3 , PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci Total Environ 2021;754:141978. https://doi.org/10.1016/j.scitotenv.2020.141978
  • 32. Mahato S, Pal S, Ghosh KG. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci Total Environ 2020;730:139086. https://doi.org/10.1016/j.scitotenv.2020.139086
  • 33. Sahu KK, Kumar R. Preventive and treatment strategies of COVID-19: From community to clinical trials. J Family Med Prim Care 2020;9(5):2149-2157. https://doi.org/10.4103/jfmpc.jfmpc_728_20
  • 34. Liu F, Wang M, Zheng M. Effects of COVID-19 lockdown on global air quality and health. Sci Total Environ 2021;755(Pt 1):142533. https://doi.org/10.1016/j.scitotenv.2020.142533
  • 35. Shehzad K, Xiaoxing L, Ahmad M, Majeed A, Tariq F, Wahab S. Does air pollution upsurge in megacities after Covid-19 lockdown? A spatial approach. Environ Res 2021;197:111052. https://doi.org/10.1016/j.envres.2021.111052
  • 36. Baldasano JM. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci Total Environ 2020;741:140353. https://doi.org/10.1016/j.scitotenv.2020.140353
  • 37. Vultaggio M, Varrica D, Alaimo MG. Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy). Int J Environ Res Public Health 2020;17(20):7375. https://doi.org/10.3390/ijerph17207375
  • 38. Kanniah KD, Kamarul Zaman NAF, Kaskaoutis DG, Latif MT. COVID-19’s impact on the atmospheric environment in the Southeast Asia region [published correction appears in Sci Total Environ. 2020;745:142200]. Sci Total Environ 2020;736:139658. https://doi.org/10.1016/j.scitotenv.2020.139658
  • 39. Berman JD, Ebisu K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci Total Environ 2020;739:139864. https://doi.org/10.1016/j.scitotenv.2020.139864
  • 40. Bhat SA, Bashir O, Bilal M, Ishaq A, Din Dar MU, Kumar R, et al. Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ Res. 2021 Apr;195:110839. https://doi.org/10.1016/j.envres.2021.110839
  • 41. Bao R, A. Zhang A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ 731 (2020), p. 139052. https://doi.org/10.1016/j.scitotenv.2020.139052
  • 42. Wang M, Liu F, Zheng M. Air quality improvement from COVID-19 lockdown: evidence from China [published online ahead of print, 2020 Nov 9]. Air Qual Atmos Health 2020;1-14. https://doi.org/10.1007/s11869-020-00963-y
  • 43. Singh RP, Chauhan A. Impact of lockdown on air quality in India during COVID-19 pandemic [published online ahead of print, 2020 Jul 7]. Air Qual Atmos Health 2020;1-8. https://doi.org/10.1007/s11869-020-00863-1
  • 44. Nakada LYK, Urban RC. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci Total Environ 2020;730:139087. https://doi.org/10.1016/j.scitotenv.2020.139087
  • 45. Mendez-Espinosa JF, Rojas NY, Vargas J, Pachón JE, Belalcazar LC, Ramírez O. Air quality variations in Northern South America during the COVID-19 lockdown. Sci Total Environ 2020;749:141621. https://doi.org/10.1016/j.scitotenv.2020.141621
  • 46. Orak NH, Ozdemir O. The impacts of COVID-19 lockdown on PM10 and SO2 concentrations and association with human mobility across Turkey. Environ Res 2021;197:111018. https://doi.org/10.1016/j.envres.2021.111018
  • 47. Çelik E, Gül M. How Covid-19 pandemic and partial lockdown decisions a ect air quality of a city? The case of Istanbul, Turkey. Environ Dev Sustain 2021. https://doi. org/10.1007/s10668-021-01328-w https://doi.org/10.1007/s10668-021-01328-w