Yapıların deprem davranışlarının iyileştirilmesi için çelik çapraz elemanların optimum yerleşimi

Bu çalışmada, düzlem çerçeveler için X tipi çelik diyagonallerin optimum yerleşimi gösterildi. Optimum yerleşim diyagonallerin optimum yer ve büyüklükleri tanımlandı. Birinci mod etkisindeki kararlı yapısal davranış, başlangıç durumlarından ve giriş hareketinden bağımsız olan transfer fonksiyonları ile ifade edildi. Amaç fonksiyonları yapının birinci moduna karşı gelen transfer fonksiyonu tepe deplasmanı ve taban kesme kuvveti olarak seçildi. Optimizasyon yönteminde, tasarım değişkenleri olarak eklenen diyagonallere ait olan rijitlik parametreleri tanımlandı. Lagrange çarpanları yöntemi kullanılarak optimumluk kriterleri türetildi. Ortaya çıkan doğrusal olmayan denklem takımı en dik yön algoritması (Steepest Direction Search Algorithm) ile çözüldü. Yapının davranışı hem transfer fonksiyonlarına bağlı olarak hem de El Centro deprem kuvvetleri altında araştırıldı.

Optimal placement of steel diagonal braces for the rehabilitation of the earth-puake response of the structures

The different rehabilitation systems have been used to upgrade the seismic response of the structures. Common rehabilitation techniques were based on two basic approximations; to rehabilitate with adding new elements such as steel bracing and shear walls or to upgrade with selectively strengthening the deficient structural elements of the buildings. In this study, the optimal placement of X steel braces is presented for a planar building frame. The optimal placement is defined as the optimal size and location of the braces. Steady state response of the structure evaluated first undamped natural frequency is defined transfer functions that are independent on initial values and input excitation. The objective functions are chosen as the transfer function amplitude of the top displacement and the transfer function amplitude of the base shear force evaluated at the undamped fundamental natural frequency of the structure. In the optimization procedure, the stiffness parameters of the added braces are defined as the design variables. Principal optimality criteria are derived using Lagrange Multipliers Procedure. Obtained nonlinear equations are solved with “Steepest Direction Search” algorithm. Sensitivities of the objective function are derived analytically. A simplified algorithm for the state of the base shear force as objective function is shown. The response of the structure is investigated both the transfer function amplitude and the time history analysis values under El Centro earthquake forces.

___

  • Badoux, M., (1987). Seismic retrofitting of reinforced concrete frame structures with steel bracing systems, PhD Thesis, The University of Texas at Austin, Texas.
  • Downs, R.E., Hjelmstat, K.D. ve Foutch, D.A., (1991). Evaluation of two RC building retrofit with steel bracing, Structural research series No:563, Department of Civil Engineering, University of Illinois at Urbana-Champaign.
  • Miranda, E. (1991). Seismic evaluation and upgrading of existing structures, PhD Thesis University of California at Berkeley, California.
  • Mitchell, D. ve Dandurand, A., (1988). Repair and upgrading of concrete structures in Mexico City after the 1985 earthquake, Canadian Journal of Civil Engineering, 15, 1052-1066.
  • Sugano, S., (1989). Study of seismic behavior of retrofitted RC buildings, Seismic Engineering, Research and Practice, Proc. of the sessions related to seismic engineering at structures congress, American Society of Civil Engineering, 517-526.
  • Takewaki, I. ve Yoshitomi, S., (1998). Effects of support stiffness on optimal damper placement for a planar building frame, Struct. Des. Of Tall Buildings, 7, 4, 323-336.
  • Takewaki, I., (1997). Efficient redesign of damped structural systems for target transfer functions, Computer Methods in Applied Mechanics and Engineering, 147, 275-286.
  • Takewaki, I., (1999). Displacement-acceleration control via stiffness-damping collaboration, Earthquake Engineering and Structural Dynamics, 28, 1567-1585.
  • Takewaki, I., (2000a). An approach to stiffnessdamping simultaneous optimization, Computer Methods in Applied Mechanics and Engineering, 189, 641-650.
  • Takewaki, I., Sato, H., Uetani K., (2000b). Reducedbasis stiffness inversion of a structure foundation system via component-mode synthesis, Struc. Des. of Tall Build., 9, 3, 215-232.
  • Valle-C, E.D., (1980). Some lessons from the march 14, 1979 earthquake in Mexico City, Proc. 7WCEE, Istanbul, Turkey, 7, 545-552.
  • Valle-C, E.D., Foutch, D.A., Hjelmstad, K.D., Gutierrez, E.F., Colunga, A.T., (1988). Seismic retrofit of RC building: a case study, Proc. 9WCEE, Kyoto Tokyo, 7, 451-456.
  • Yamamato, Y. ve Aoyama, H., (1987). Seismic behavior of existing RC frame strengthened with retrofitting steel elements, Proc. of the seminar on repair and retrofit of structures, UJNR, Tsukuba, Japan.