Mareograf ve sabit GPS ile uzun dönemli mutlak deniz seviyesi değişimleri

Norveç kıyılarındaki ANDENES ve TREGDE mareograf istasyonlarındaki uzun dönemli mutlak deniz seviyesi değişimleri mareograf ve Sabit GPS zaman serilerinin analizi ile araştırılmıştır. Aylık ortalama deniz seviyesi ile Sabit GPS yükseklik zaman serilerindeki periyodik sinyallerin konumsal ve zamansal karakteri Deneysel Ortogonal Fonksiyon ve spektral analiz yöntemleri kullanılarak belirlenmiştir. Hem mareograf hem de Sabit GPS yükseklik zaman serisi doğrusal trendleri En Küçük Karelerle harmonik analiz yöntemiyle hesaplanmıştır. TREGDE’de anlamlı bir deniz seviyesi trendi bulunmazken, ANDENES mareograf istasyonunda uzun dönemli mutlak deniz seviyesinin 2.44 ± 0.21 mm/yıl hızla yükseldiği belirlenmiştir. Bu değer literatürdeki 1-3 mm/yıl düzeyindeki global deniz seviyesi değişimleri ile uyumludur.

Long term absolute sea level changes by tide gauge and continuous GPS data

Long term absolute sea level changes at ANDENES and TREGDE tide gauges at Norwegian coasts are investigated by the analysis of the tide gauge and Continuous GPS time series. The spatial and temporal character of interannual to interdecadal sea level varitaions in tide gauge monthly mean sea level data and periodic signals in Continuous GPS height time series are determined by using Emprical Ortogonal Function and spectral analysis methods. The linear trends of both tide gauge and Continuous GPS height time series are calculated by harmonic analysis method with Least Squares Estimation. While no significant relative sea level trend is found at TREGDE, 2.04 ± 0.19 mm/year is found at ANDENES. While no significant absolute vertical movement is determined at TGDE and ANDE, the absolute vertical velocity of ANDO Continuous GPS station is 0.40 ± 0.10 mm/year and generally agrees with 0.89 mm/year land uplift determined by a Post Glacial Rebound model. The absolute sea level at ANDENES tide gauge is determined to be rising with a rate of 2.44 ± 0.21 mm/year by combining the vertical velocity of ANDE Continuous GPS station with the relative sea level trend. This value is consistent with the global sea level rise estimates which is in the order of 1-3 mm/year.

___

  • Barnett, T.P. (1983). Recent changes in sea level and their possible causes, Climatic Change, 5, 15-38.
  • Baisch, S. ve Bokelmann, G.H.R. (1999). Spectral analysis with incomplete time series: an example from seismology, Computers and Geosciences, 25, 739-750.
  • Bevis, M., Scherer,W. ve Merrifield, M. (2002). Technical issues and recommendations related to the installation of continuous GPS stations at tide gauges. Marine Geodesy, 25, 1, 87–99.
  • Blewitt, G. ve Lavallée, D., (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107, B7, ETG9–1/9–11, DOI:10.1029/2001JB000570.
  • Cingöz, A., Yıldız, H. ve Demir, C. (2005).Türkiye Ulusal Deniz Seviyesi İzleme Sistemi (TUDES) Mareograf-GPS Noktalarında 1992-2003 Dönemindeki Tekrarlı GPS Ölçülerinin Değerlendirilmesi, JEOFNIV-1-2005 nolu Teknik Rapor, 23, Jeodezi Dairesi Başkanlığı, Harita Genel Komutanlığı.
  • Douglas B.C. (1991). Global sea level rise, Journal of Geophysical Research, 96, C4, 6981-6992.
  • Emery W.J. ve Thomson, R.E. (1998). Data Analysis Methods in Physical Oceanography, 634, Pergamon, Elsevier, Newyork.
  • Herring, T.A. (2003). GAMIT/GLOBK Kalman Filter VLBI and GPS Analysis Program, Version 5.08, Massachusetts Institute of Technology, Cambridge.
  • Heslop, D. ve Dekkers, M. (2001). Spectral analysis of unevenly spaced time series using CLEAN: signal recovery and derivation of significance levels using a Monte Carlo simulation, User Manual.
  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., ve Maskell, K., eds. (1995). Climate change 1995, Intergovernmental Panel on Climate Change, 572, Cambridge University Press.
  • Kierulf, H. P. ve Plag, H. P. (2004). ESEAS CGPS Processing strategy determination of high accuracy vertical velocities, Report No: ESEASNMA- T2.1-D2.1A, January 12.
  • King R.W. ve Bock, Y. (2003). Documentation for the GAMIT analysis software release V.10.1, Massachusetts Institute of Technology, Cambridge.
  • Koch, K.R. (1987). Parameter Estimation and Hypothesis Testing in Linear Models, Springer- Verlag, New york.
  • Nakiboğlu M. ve Demir C. (2002). Dengeleme Hesabı Cilt I, Harita Genel Komutanlığı, Harita Yüksek Teknik Okulu Komutanlığı, Ankara.
  • Peltier, W. R. (2001). ICE-4G (VM2) glacial isostatic adjustment corrections in Douglas, B. C., Kearney, M. S., Leatherman, S. P., eds, Sea Level Rise History and Consequences, International Geophysics Serie, 75, Academic Press, San Diego.
  • Plag H.P., ed, (2002). Description of Work, European Sea Level Service Research Infrastructure (ESEAS-RI), 95, Project No: EVR1-2001-00042,
  • Pope, Allen J. (1976). The Statistics of residuals and the detection of outliers, NOAA Technical Report, NOS65, NS1.
  • Preisendorfer, R.W. (1988). Principal Component Analysis in Meteorology and Oceanography, Developments in Atmospheric Science, 17, Elsevier, Amsterdam.
  • Shennan, I. ve Woodworth, P.L., (1992). A Comparision of late Holocene and twentiethcentury sea level trends from the UK and North Sea region, Geophysical Journal International, 109, 96-105.
  • Şanlı, D.U. ve Blewitt., G. (2001). Geocentric sea level trend using GPS and >100-yr tide gauge record on a post glacial rebound nodal line, Journal of Geophysical Research, 106, B1, 713-719.
  • Woodworth, P.L., Tsimplis, M.N., Flather, R.A. ve Shennan, I. (1999). A Review of the trends observed in British Isles mean sea level data measured by tide gauges, Geophysics Journal International, 136, 651-670.
  • Woodworth, P.L. (1987). Trends in U.K. mean sea level, Marine Geodesy, 11, 57-87.