$TiO_2$ fotokatalistleri
Son yıllarda, titanyum dioksit (TiO2) üzerinde, fotokatalitik aktivite özelliğinden dolayı yoğun olarak çalışılmaktadır. TiO2, UV ışığı ile uyarıldığı zaman fotoaktif özellik gösteren ve organik grupları parçalayabilen yarıiletken bir malzemedir. TiO2, ışığa maruz bırakıldığında, suyun arıtılmasında, kendi kendini temizleyebilen, buğulanmayan yüzeylerin elde edilmesinde, fotokimyasal olarak kanser tedavisi uygulamalarında, havanın arındırılmasında kullanılabilir. TiO2 filmler, kimyasal buhar biriktirme, sıçratma, elektron demeti ile buharlaştırma, iyon ışını destekli biriktirme ve sol-jel gibi yöntemlerle değişik yüzeyler üzerine kaplanabilirler. TiO2, anataz, rutil ve brukit olmak üzere üç farklı kristal yapıya sahiptir. Birçok uygulamada TiO2’in anataz formu en iyi fotoaktivite özelliği göstermektedir. TiO2’in, solar spektrumun çok az bir bölümünü oluşturan UV ışığı ile aktive edilebiliyor olması bu malzemenin pratik uygulamalardaki kullanımını sınırlandırmaktadır. Bundan dolayı, pratik uygulamalar için, TiO2’in fotoaktivitesinin geliştirilmesi gerekmektedir. Fotoaktiviteyi arttırmanın bir yolu, TiO2’in geçiş metalleri veya soy metallerle katkılandırma işlemi yaparak soğurma (absorption) bandının UV bölgesinden, görünür bölgeye kaydırılmasıdır. Literatürde, titanyum oksit filmlere gümüş, tungsten ve molibden katkılandırılmasına yönelik çalışmalar yapılmış ve üç katkılandırmanın da, titanyum oksit filmlerin fonksiyonalitesine farklı mekanizmalar üzerinden ciddi katkılar yapacak nitelikte olduğu belirtilmiştir. Bu çalışmada, TiO2’in fotokatalitik aktivite mekanizması tartışılmış ve TiO2’in kullanım alanları anti-bakteriyel özelliklerine odaklanarak özetlenmiştir. Buna ek olarak, gümüş, tungsten ve molibden katkısının TiO2’in, anti-bakteriyel aktivitesine olan etkileri tartışılmıştır.
$TiO_2$ photocatalysts
Recently, titanium dioxide (TiO2) has been studied extensively due to its high photocatalytic activity for handling of several types of environmental problems. Major areas of activity in TiO2 photocatalysis are; water purification, photochemical cancer treatment, air purification, self-sterilizing, fog-proof and self-cleaning surfaces.Photocatalysis can be defined as “acceleration of a photoreaction by the presence of a photocatalyst”. Photocatalytic reactions necessitate a photocatalyst that absorbs the phonons and drives the redox reactions.TiO2 is a semiconductor and it can be chemically activated by UV light. TiO2 has three different crystal structures which are anatase, brookite and rutile. TiO2 in the anatase form is the most efficient of photocatalysts for many applications. The band gap energy of anatase TiO2 is 3.2 eV and it can be only activated by UV light. Although UV light is present in the solar spectrum it is only a very limited part. For practical applications the photocatalytic activity of TiO2 needs further improvement. Doping TiO2 with transition metals or noble metals is an effective way to improve photocatalytic activity. When TiO2 is exposed to UV light, electron-hole pairs are created. The photogenerated holes in the valence band, which has strong oxidizing power, diffuse to the surface and react with adsorbed water in order to produce hydroxyl radicals (•OH). These hydroxyl radicals participate in oxidizing organic molecules. On the other hand, electrons in the conduction band react with molecular oxygen in the air to produce the superoxide radical anion (O2-•), which also participates in further oxidation processes. The photocatalytic efficiency of TiO2 strongly depends on surface area and electron-hole recombination rate. The surface area of the photocatalyst increases with a smaller particle size and the active surface sites increase. For improving photocatalytic efficiency, electron-hole recombination rate should be reduced. An effective way to seperate electron-hole pairs is to introduce foreign materials into TiO2 matrix. As mentioned above, TiO2 can be used in different application areas. One of the remarkable property of TiO2 is its self-cleaning effect. The surfaces of glasses, ceramic tiles can be contaminated by organic particles such as smoke residue, oil and dirt. TiO2 thin films can be applied to these surfaces in order to decompose those organic species. Another excellent property of TiO2 photocatalysts is their anti-bacterial effect. TiO2 can decompose bacteria and virus when it is exposed to UV light. TiO2 has advantages over conventional self-sterilizing surfaces. For instance, in the case of E.coli, TiO2 decompose both the living cells as well as the endotoxin released from these cells during their death. TiO2 photocatalysts can also be used for cancer treatment. TiO2 particles which are injected to the tumor clearly inhibit the tumor growth. In literature, there are several studies which are related to the doping effect of silver. Studies which are performed on the effect of silver dopant are focused on the change of optical and electronical properties of TiO2. Moreover, since silver itself is known as strong anti-bacterial agent it is used as dopant for improving anti-bacterial properties of TiO2. Doping silver can give rise to the separation of electron-hole pairs and can accelerate the forma-tions of oxidative species. In addition to this, silver can reduce particle size which is needed for increas-ing surface area of TiO2.In order to obtain anti-bacterial effect in the dark, energy storage photocatalyst can be produced by doping TiO2 with tungsten. TiO2-WO3 photocatalyst can be photo-charged by irradiating their surfaces with UV light. Photo-charged tungsten doped TiO2 films are able to show anti-bacterial effect when the light is turned off. Molybdenum also is an energy storage material and it can be used as an alternative to those of tungsten. In this study, the mechanism of photocatalytic activity is discussed and the application fields of TiO2 photocatalysts were summarized by focussing on the bacterial activity of TiO2. Moreover, the effect of silver, tungsten and molybdenum dopants on the bacterial activity of TiO2 were discussed.
___
- Anpo, M., Kawamura, T., Kodama, S., Maruya, K. ve Onishi, T., (1988). Photocatalysts on Ti-Al Binary Metal Oxides: Enhancement of the Photocatalytic Activity of TiO2 Species, Journal of Physical Chemistry, 92, 2, 438-440.
- Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J. ve Gole, J.L., (2003). Enhanced Nitrogen Doping in TiO2, Nano Letters, 3, 8, 1049-1051.
- Clement, J.L. ve Jarrett, P.S., (1994). Antibacterial Silver, Metal-Based Drugs, 1, 5-6, 467-482.
- Dvoranová, D., Brezová, V., Mazúr, M. ve Malati, M.A., (2002). Investigations of Metal-Doped Titanium Dioxide Photocatalysts, Applied Catalysis B: Environmental, 37, 2, 91-105.
- Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O., (2000). A Mechanistic Study of the Antibacterial Effect of Silver ions on Escherichia coli and Staphylococcus Aureus, Journal of Biomedial Materials Research, 52, 4, 662-668.
- Frank, S.N. ve Bard, A.J., (1977). Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solution at TiO2 Powder. Journal of American Chemical Society, 99, 1, 303-304.
- Fu, G., Vary, P.S. ve Lin, C-T., (2005). Anatase TiO2 Nanocomposites for Antimicrobial Coatings, Journal of Physical Chemistry B, 109, 18, 8889-8898.
- Fujishima, A. ve Honda, K., (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 5358, 37-38.
- Fujishima, A., Hashimoto, K. ve Watanabe, T., (1999). TiO2 Photocatalysis, Fundamentals and Applications, BKC, Inc Publishers, Japan.
- Fujishima, A., Rao, T.N. ve Tryk, D.A., (2000a). TiO2 Photocatalysts and Diamond Electrodes, Electrochimica Acta, 45, 28, 4683-4690.
- Fujishima, A., Rao, T.N. ve Tryk, D.A., (2000b). Titanium Dioxide Photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21.
- Hattori A. ve Tada H., (2001). High Photocatalytic Activity of F-Doped TiO2 Film on Glass, Journal of Sol-Gel Science and Technology, 22, 1-2, 47-52.
- He, C., Yu, Y., Hu, X. ve Larbot, A., (2002). Influence of Silver Doping on the Photocatalytic Activity of Titania Films, Applied Surface Science, 200, 1-4, 239-247.
- Heller, A., (1995). Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films, Accounts of Chemical Research, 28, 12, 503-508.
- Hirano, M., Nakahara, C., Ota, K., Tanaike, O. ve Inagaki, M., (2003). Photoactivity and Phase Stability of ZrO2-Doped Anatase-Type TiO2 Directly Formed as Nanometer-Sized Particles by Hydrolysis under Hydrothermal Conditions, Journal of Solid State Chemistry, 170, 1, 39-47.
- Hoffmann, M.R., Martin, S.T., Wonyong Choi, W. ve Bahnemann, D.W., (1995). Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95, 1, 69-96.
- Huang, Z., Maness, P-C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L. ve Jacoby, W.A., (2000). Bactericidal Mode of Titanium Dioxide Photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 130, 2-3, 163-170.
- Irie, H., Watanabe, Y. ve Hashimoto, K., (2003). Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, Journal of Physical Chemistry B, 107, 23, 5483-5486.
- Iwasaki, M., Hara, M., Kawada, H., Tada, H. ve Ito, S., (2000). Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light, Journal of Colloid and Interface Science, 224, 1, 202-204.
- Jeon, H-J., Yi, S-C. ve Oh, S-G., (2003). Preparation and Antibacterial Effects of Ag–SiO2 Thin Films by Sol–Gel Method, Biomaterials, 24, 27, 4921-4928.
- Jiang, H. ve Gao, L., (2003). Enhancing the UV Inducing Hydrophilicity of TiO2 Thin Film by Doping Fe Ions, Materials Chemistry and Physics, 77, 3, 878-881.
- Karakitsou, K.E. ve Verykios, X.E., (1993). Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage, Journal of Physical Chemistry, 97, 6, 1184-1189.
- Katsumata, K., Nakajima, A., Yoshikawa, H., Shiota, T., Yoshida, N., Watanabe, T., Kameshima, Y. ve Okada, K., (2005). Effect of Microstructure on Photoinduced Hydrophilicity of Transparent Anatase Thin Films, Surface Science, 579, 2-3, 123–130.
- Lee, H.Y., Park, Y.H. ve Ko, K.H., (2000). Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD-TiO2 Films, Langmuir, 16, 18, 7289-7293.
- Li, Z., Hou, B., Xu, Y., Wu, D., Sun, Y., Hu, W. ve Deng, F., (2005). Comparative Study of Sol–Gel- Hydrothermal and Sol–Gel Synthesis of Titania– Silica Composite Nanoparticles, Journal of Solid State Chemistry, 178, 5, 1395–1405.
- Linsebigler, A.L., Lu, G., Yates, J.T., (1995). Photocatalysis in TiO2 Surfaces: Principles, Mechanism, and Selected Results, Chemical Reviews, 95, 3, 735-758.
- Machida, M., Norimoto, K., Watanabe, T., Hashimoto, K. ve Fujishima, A., (1999). The Effect of SiO2 Addition in Super-Hydrophilic Property of TiO2 Photocatalyst, Journal of Materials Science, 34, 11, 2569 - 2574.
- Maness, P-C., Smolinski, S., Blake, D., Huang, Z., Wolfrum, E.J., Jacoby, W.A., (1999). Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of its Killing Mechanism, Applied and Environment Microbiology, 65, 9, 4094-4098.
- Matsunaga, T., Tomada, R., Nakajima, T. ve Wake, H., (1985). Photochemical Sterilization of Microbial Cells by Semiconductor Powders, FEMS Microbiology Letters, 29, 1-2, 211–214.
- Matthews, R.W., (1986). Photocatalytic Oxidation of Chlorobenzene in Aqueous Suspensions of Titanium Dioxide, Journal of Catalysis, 97, 2, 565-568.
- Matthews, R.W., (1987). Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxide, Journal of Physical Chemistry, 91, 12, 3328-3333.
- Matthews, R.W., (1988). Kinetics of Photocatalytic Oxidation of Organic Solutes over Titanium Dioxide, Journal of Catalysis, 111, 2, 264-272.
- Miao, L., Tanemura, S., Kondo, Y., Iwata, M., Toh, S. ve Kaneko, K., (2004). Microstructure and Bactericidal ağabeylity of Photocatalytic TiO2 Thin Films Prepared by rf Helicon Magnetron Sputtering, Applied Surface Science, 238, 125-131.
- Mills, A. ve LeHunte, S.H., (1997). An Overview of Semiconductor Photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 108, 1, 1-35.
- Miyauchi, M., Nakajima, A., Watanabe, T. ve Hashimoto, K., (2002). Photoinduced Hydrophilic Conversion of TiO2/WO3 Layered Thin Films, Chemistry of Materials, 14, 11, 4714-4720.
- Modak, K. ve Fox., C., (1973). Binding of Silver Sulfadiazine in the Cellular Components of Pseudomonas Aeroginosa, Biochemical Pharmacology, 22, 2392-2404.
- Moon, S.C., Mametsuka, H., Tabata, S. ve Suzuki, E., (2000). Photocatalytic Production of Hydrogen from Water Using TiO2 and B/TiO2, Catalysis Today, 58, 2-3, 125-132.
- Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. ve Yacaman, M.J., (2005). The Bactericidal Effect of Silver Nanoparticles, Nanotechnology, 16, 2346-2353.
- Nunzio, S.D., Brovarone, C.V., Spriano, S., Milanese, D., Verne, E., Bergo, V., Maina, G. ve Spinelli, P., (2004). Silver Containing Bioactive Glasses Prepared by Molten Salt Ion-Exchange, Journal of the European Ceramic Society, 24, 2935-29.
- Ollis D.F. ve Al-Ekabi, H., (1993). Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam.
- Ranjit, K.T. ve Viswanathan, B., (1997). Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts, Journal of Photochemistry and Photobiology A: Chemistry, 107, 1-3, 215-220.
- Sakai, N., Wang, R., Fujishima, A., Watanabe, T., Hashimoto, K., (1998). Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces, Langmuir, 14, 20, 5918-5920.
- Serpone, N., Lawless, D., Disdier, J. ve Herrmann, J-M., (1994). Spectroscopic, Photoconductivity, and Photocatalytic Studies of Ti02 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations, Langmuir, 10, 3, 643-652.
- Subramanian, V., Wolf, E.E. ve Kamat, P.V., (2004). Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration, Journal of the American Chemical Society, 126, 15, 4943-4950.
- Sunada, K., Kikuchi, Y., Hashimoto, K. ve Fujishima, A., (1998). Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, Environmental Science and Technology, 32 (5) 726–728.
- Sunada, K., Watanabe, T. ve Hashimoto, K., (2003). Studies on Photokilling of Bacteria on TiO2 Thin Film, Journal of Photochemistry and Photobiology A: Chemistry, 156, 227-233.
- Takahashi, Y., Ngaotrakanwiwat, P. ve Tatsuma, T., (2004). Energy Storage TiO2-MoO3 Photocatalysts, Electrochimica Acta, 49, 12, 2025-2029.
- Tanguay, J.F., Suib, S.L. ve Coughlin, R.W., (1989). Dichloromethane Photodegradation Using Titanium Catalysts, Journal of Catalysis, 117, 2, 335-347.
- Taraba, K., Haraba, K. ve Murata, S., (1986). Photocatalytic Deposition of Metal Ions onto TiO2 Powder, Solar Energy, 36, 2, 159-161.
- Tatsuma, T., Saitoh, S., Ohko, Y. ve Fujishima, A., (2001). TiO2-WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability, Chemistry of Materials, 13, 2838-2842.
- Tatsuma, T., Saitoh, S., Ngaotrakanwiwat, P., Ohko, Y. ve Fujishima, A., (2002). Energy Storage of TiO2-WO3 Photocatalysis Systems in the Gas Phase, Langmuir, 18, 7777-7779.
- Tatsuma, T., Takeda, S., Saitoh, S., Ohko, Y., Fujishima, A., (2003). Bactericidal Effect of an Energy Storage TiO2–WO3 Photocatalyst in Dark, Electrochemistry Communications, 5, 793-796.
- Trapalis, C.C., Keivanidis, P., Kordas, G., Zaharescu, M., Crisan, M., Szatvanyi, A. ve Gartner, M., (2003). TiO2 (Fe3+) Nanostructured Thin Films with Antibacterial Properties, Thin Solid Films, 433, 186-190.
- Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. ve Watanabe, T., (1997). Light-Induced Amphiphilic Surfaces, Nature, 388, 431–432.
- Wang, R., Sakai, N., Fujishima, A., Watanabe, T. ve Hashimoto, K., (1999). Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces, Journal of Physical Chemistry B, 103, 2188-2194.
- Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A. ve Hashimoto, K., (1999). Photocatalytic Activity and Photoinduced Hydrophilicity of Titanium Dioxide Coated Glass, Thin Solid Films, 351, 1-2, 260-263.
- Yu J.C., Yu, J.G., Ho, W.K., Jiang, Z. ve Zhang, L., (2002a). Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chemistry of Materials, 14, 9, 3808-3816.
- Yu, J.G., Yu, J.C., Cheng, B. ve Zhao, X., (2002b). Photocatalytic Activity and Characterization of the Sol-Gel Derived Pb-Doped TiO2 Thin Films, Journal of Sol-Gel Science and Technology, 24, 1, 39-48.
- Yu, J.C., Xie, Y., Tang, H.Y., Zhang, L., Chan, H.C. ve Zhao, J., (2003). Visible Light-Assisted Bactericidal Effect of Metalphthalocyanine- Sensitized Titanium Dioxide Films, Journal of Photochemistry and Photobiology A: Chemistry, 156, 235-241.
- Zhao, G. ve Stevens, E.S., (1998). Multiple Parameters for the Comprehensive Evaluation of the Susceptibility of Escherichia Coli to the Silver Ion, BioMetals, 11, 27-32.
- Zhang, X., Zhang, F. ve Chan, K.Y., (2006). The Synthesis of Pt-Modified Titanium Dioxide Thin Films by Microemulsion Templating, Their Characterization and Visible-Light Photocatalytic Properties, Materials Chemistry and Physics, 97, 384-389.
- Zheng, S.K., Wang, T.M., Hao, W.C. ve Shen, R., (2002). Improvement of Photocatalytic Activity of TiO2 Thin Film by Sn Ion Implantation, Vacuum, 65, 2, 155-159.