Sinyal eşleme yöntemi kullanılarak kazık süreklilik deneylerinin değerlendirilmesi ve kazık kalitesinin belirlenmesi

Bu çalışmada, bir toplu konut inşaatında kazıklı temel olarak inşaa edilen temellere, tahribatsız kazık süreklilik deneyleri uygulanmış ve Hollandalı Profound firması tarafından geliştirilen “TNOWAVE: SITWAVE” programı ile kazık sürekliliği ve imalat kalitesi incelenmiştir. Süreklilik deneyleri yapıldıktan sonra kontrol amacı ile sinyal eşleme “signal matching” programı kullanarak, daha emin sonuçlara ulaşmak mümkündür. Analizde test sinyalleri ile referans sinyalleri eşleştirilir ve arazideki yaklaşık kazık şekline ulaşılır. Böylece arazideki kazık üzerindeki kusurları net bir biçimde görebilmek mümkün olabilmektedir. Esenyurt’ta bir toplu konut inşaatındaki, 191 kazık üzerinde yapılan tahribatsız düşük deformasyonlu süreklilik deneylerinden elde edilen sinyaller, sinyal eşleme programı yardımı ile analiz edilmiş ve “hız-zaman” grafikleri çizilmiştir. Analiz ile kazığın kesiti hakkında büyük bir yaklaşıklık ile bahsedilen kusurları saptamak mümkün olmuştur. Kazık kesitindeki genişlem, kazık performansını olumsuz yönde etkileyecek bir faktör değildir. Ayrıca bu etki kazığın çevre sürtünmesi ile taşınan yükü arttıran bir etken olduğu için, kazık kesitindeki genişlemeler fazla dikkate alınmamaktadır. Buna karşın kazık kesitindeki daralmalar, kazık performansını olumsuz yönde etkileyebileceği için, mevcut kazığın yerine yeni bir kazık yapılması veya ilave kazık imalatı gibi sonuçlar ortaya çıkabilmektedir. Bu çalış-mada süreklilik deneyi yapılmış kazıkların sinyal eşleme yardımı ile tekrar kontrol edilmesi, kazıkların güvenilirliğinin teknik olarak irdelenmesi, gerekirse kusurlu kazıklarda düzeltme önerilebilmesi ve böy-lece kazık imalat kalitesinin daha iyi belirlenebilmesi hedeflenmiştir. Sonuç olarak, 15 m boyunda 0,50 m çapında imal edilen 191 tane kazık üzerinde herbir kazık için kazık boyu üç eşit kısıma ayrılarak, (0-5)m, (5-10)m ve (10-15)m olacak şekilde, kazık alt, orta ve üst kısmını göz önüne alacak şekilde üç ayrı değerlendirme yapılmış ve bu noktalar arasında kazık kesitinde meydana gelen genişleme ve daralma-lar ele alınıp, incelenmiş ve kazık kalitesi değerlendirilmiştir.

Evaluation of pile integrity testing by signal matching method and determination of pile quality

Use of pile integrity tests are common in the engineering applications in order to find the discontinuities of the piles. The aim of the pile integrity tests is to confirm the integrity of the pile and determine major faults in the pile. The integrity tests are based on the method ASTM D-5882. The integrity of individual vertical or inclined piles are analyzed by measuring and analyzing the velocity response of the pile induced by a hand held hammer with plastic tip applied axially to the pile normally at the pile head. The top of the pile is hit with a plastic hammer and the reflected waves are recorded by a suitable computerized equipment. From the resulting signal, or reflectogram, one can determine both length and continuity of the pile. SIT (Sonic Integrity Testing) provides quick and inexpensive results compared to core drilling, inspection by excavation and load tests which are time-consuming and costly. Hundreds of piles can be tested in a single day by using SIT equipment. However the sonic integrity testing should not be used to estimate bearing capacity. To obtain the best results from the analysis, the pile head should be clean, accessible and free from water. SIT is not generally suitable for prefabricated piles and piles with permanent casings. In the future, because of the increasing need in the civil engineering developments, the use of deep foundations will increase. For the analysis and check of the piles to be cast in these projects, the pile integrity testing is the most economical solution. The stress wave theory is used for the interpretation of the pile integrity tests. A. L. Smith produced the first general solution for the practical application of stress wave theory to piles. The method became practical by the adaptation of the analysis to the newly developed digital computers. Smith’s model is still the basis for modern wave equation analysis. In SITWAVE we use TNO soil model is used for the analysis. In both of them soil is reflect by springs and dashpot systems. The springs shows the elasticity of pile which will model by the characteristic of pile material and the dashpot systems refers to the damping of the soil. The aim of this study is to determine the quality of piles that were driven in Esenyurt Mass Housing Project. The piles were analyzed using Profound’s “TNOWAVE” software package which utilizes stress wave equation systems. SITWAVE is one of these programs which simulates the sonic integrity testing and performs automatic signal matching. Using the signal matching method, the piles previously tested by the pile integrity test were analyzed. In this research, totally 191 cast-in-situ piles 15m long and 50cm in diameter were tested. The reference signals were matched with the test signals by using SITWAVE software. The reference signals are the signals taken from the site and the test signals are created by the software in terms of the pile and soil data. The deviations from the reference signals show that the locations where enlargement and decrement in the cross-section occured. At the end of the analysis, the graphics given by the software include velocity and radius as function of time and length. The piles were considered in three equal lengths, (0- 5)m, (5-10)m and (10-15)m to find out the piles which had discontinuities. For the evaluation of the piles the piles which are determined to have enlargement more than %3 in diameter are considered as enlargement type and the piles which have decrement more than %3 in diameter as decrement type. The piles which have decrement in diameter more than %10 are considered as problematic because it can affect the structural performance of the piles. Enlargement in cross-section is not considered as a factor which will effect pile performance negatively because it will increase the pile load which will carried by the skin friction but decrement in crosssection should have negative effect on pile performance. Consequently, it should be considered as a problematic situation, if there is a decreament in crosssection which will cause a decrease in bearing capacity of piles.

___

  • ASTM D-5882, (1995). Standart test method for low strain integrity testing, American Society for Testing and Materials, USA.
  • Carino, N.J., (1999). Stress wave propagation methods, National Institute of Standards and Technology, USA.
  • Chow, Y.K., Phoon, K.K., Chow, W.F. ve Wong K.Y., (2003). Low strain integrity testing of piles, Three dimensional effects, Journal of Geotechnical and Geoenvironmental Engineering, 129, 11, November 1, 2003.
  • Deneç, G., (2006). Sinyal Eşleme Yöntemi Kullanı-larak Kazık Süreklilik Deneylerinin Değerlendi-rilmesi ve Kazık Kalitesinin Belirlenmesi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstan-bul.
  • Düzceer, İ.R., (2002). Kazık Yükleme Deneyleri İle Nihai Kazık Taşıma Kapasitesinin Belirlenmesi Üzerine Bir Çalışma, Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
  • Fleming, W.G.K., (1992). Piling Engineering 2nd Edition, E & FN Spon, An Imprint of Routledge, London and New York.
  • Mohamad, H.H. ve George, G.G., (1999). A brief history of the application of the stress wave theory to piles, USA.
  • SITWAVE, (1995). Sitwave - Sit Simulation and Signal Matching Version 7.3, TNO, Profound, Treubstraat 1j, 2288 EG Rijswijk, The Netherlands.
  • TNO Building and Construction Research, (1997). Foundation Pile Diagnostic System, Sonic Integrity Testing User’s Guide, The Netherlands.
  • Tomlinson, (1977). Pile Design and Construction Practice, A Viewpoint Publication, London.