SKASM' nin hız algılayıcısız doğrudan vektör kontrolü
Bu çalışmada, Sincap Kafesli Asenkron Motorların (SKASM’lerin) algılayıcısız kontrolünde başarımı olumsuz yönde etkileyen modele ait elektriksel ve mekanik yana ilişkin parametre belirsizliklerini çözmek üzere Genişletilmiş Kalman Filtresi (GKF) tabanlı gözlemleyici algoritmaları tasarlanarak gerçeklenmiştir. Doğrudan vektör kontrol sistemi ya da vektör kontrollü a.a sürücüsü ile başarımları test edilen bu algoritmalar ile herhangi yüksek frekanslı bir işaret eklemeksizin ve başlangıç değerleri bilinmediği varsayımıyla algılayıcısız kontrol için gerekli tüm durumlar, sabit sürtünme –viskoz– terimini de içeren yük momenti ve değeri bilinmeyen rotor direnci eş zamanlı olarak kestirilebilmiştir. Benzetim/deney sonuçları önerilen yöntemlerin oldukça etkin ve dayanıklı olduğunu göstermiştir. Bu yönleriyle, literatürde bilinen ilk çalışmadır.
Speed sensorless direct vector control of the IM
This paper offers a solution to the performance deteriorating effect of uncertainties in the sensorless control of induction motors (IMs). The major contribution of the study is the development and implementation of a Extended Kalman Filter (EKF) algorithms that take electrical and mechanical uncertainties into account. Also, unlike previous EKF based estimation studies taking the angular velocity, ωm, into consideration as a constant parameter, in this study, $omega_m$, is estimated as a state with the utilization of the equation of motion. In this regard, this is the first known study to estimate the mechanical uncertainties together with the estimation of the rotor resistance, $R_r^l$ , without injecting high frequency signals. The EKF algorithms also estimate the rotor flux, angular velocity and stator currents with no apriori knowledge on the states and initial values taken as zero. Experiments performed under unknown load torque and with rotor resistance variations up to twice the rated value, demonstrate the good performance and robustness of the estimation methods. The algorithms also estimate the mechanical uncertainties as a constant state to capture the unknown viscous and Coulomb friction in steady state, therefore, could be used to improve the performance of the velocity or position control of IM’s, if utilized in combination with a compensation scheme.
___
- Al-Tayie, J. K., Acarnley, P. P., (1997). Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended kalman filter algorithm, IEE Proceedings on Electric Power Applications, 144, 5, 301-309.
- Barut, M., Bogosyan, O. S., Gokasan M., (2002a). Genişletilmiş Kalman Filtresi tabanlı akı, hız ve yük momenti kestiricisi, Türk Otomatik Kontrol Konferansı (TOK 2002), 211-217, Ankara.
- Barut, M., Bogosyan, O. S., Gokasan M., (2002b). EKF based Estimation for direct vector control of Induction motors, Proceedings of the IEEE 28th Annual Conference on Industrial Electronics Society (IECON’02), 2, 1710-1715, Thessaloniki.
- Barut, M., Gokasan, M., Bogosyan, O. S., (2003). EKF based sensorless direct vector control of induction motors, Proceedings of the IEEE 29th Annual Conference on Industrial Electronics Society (IECON’03), 1, 318-322, Virginia.
- Barut, M., Bogosyan, O. S., Gokasan M., (2005). An EKF based estimator for speed sensorless vector control of induction motors, Electric Power Components & Systems, formerly Electric Machines And Power Systems, Taylor–Francis, 33, 7, 727–744.
- Benchaib, A., Rachid, A., Audrezet, E., Tadjine, M., (1999). Real-time sliding-mode observer and control of an induction motor, IEEE Transactions on Industrial Electronics, 46, 1, 128-138.
- Bogosyan, O. S., Gokasan, M., Hajiyev, C., (2001). An application of ekf for the position control of a single link arm, Proceedings of the IEEE 27th Annual Conference on Industrial Electronics Society (IECON’01), 1, 564 –569, Colorado.
- Chen, F., Dunnigan, M. G., (2002). Comparative study of a sliding-mode observer and Kalman filters for full state estimation in an induction machine, IEE Proceedings-Electric Power Applications, 149, 1, 53-64.
- Cruz, P.P., Rodriguez Rivas, J.J., (2000). Induction motor space vector control using adaptive reference model direct and indirect methods, Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE 2000) 1, 300-305, Mexico.
- Du, T., Vas, P., Stronach, F., (1995). Design and application of extended observers for joint state and parameter estimation in high performance AC drives, IEE Proceedings-Electric Power Applications, 142, 2, 71-78.
- Faiz, J., Sharifian, M. B. B., (2001). Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle, IEEE Transactions on Energy Conversion, 16, 1, 104–109.
- Goodwin, G. C., Sin, K. S., (1994). Adaptive filtering prediction and control, Prentice-Hall Inc., New Jersey.
- Jansen, P. L, Lorenz, R. D., Novotny, D. W., (1994). Observer-based direct field orientation: analysis and comparison of alternative methods, IEEE Transactions on Industry Applications, 30, 4, 945–953.
- Kubota, H., Matsuse, K., Nakano, T., (1993). DSPbased speed adaptive flux observer of induction motor, IEEE Transactions on Industry Application, 29, 2, 344-348.
- Pinto, J. O., Bose B. K., Da Silva, L. E. B., (2001). A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and fluxvector synthesis by neural networks, IEEE Transactions on Industry Applications, 37, 5, 1308-1318.
- Proca A. B., Keyhani A., (2002). Identification of variable frequency induction motor models from operating data, IEEE Transactions on Energy Conversion, 17, 1, 24-31.
- Salvatore, L., Stasi, S., Tarchioni, L., (1993). A new EKF-based algorithm for flux estimation in induction machines, IEEE Transactions on Industrial Electronics, 40, 5, 496 –504.
- Wade, S., Dunnigan, M. W., Williams, B. W., (1995). Comparison of stochastic and deterministic parameter identification algorithms for indirect vector control, IEE Colloquium on Vector Control and Direct Torque Control of Induction Motors, 2, 1-5, London.