Koordinat dönüşümüne dayalı zamanla değişen doğrusal kayma yüzeyi

Bu çalışmanın amacı, kayma yüzeyi tasarımı için yeni bir yöntem geliştirmektir. Yeni yaklaşımlar; birisi kayma yüzeyinin kendisi, diğeri ise doğal olarak kayma yüzeyine dik olan bir koordinat ekseninde geliştirilmiştir. Daha sonra, kontrol kuralı Lyapunov kararlılık koşulu uygulanarak düzenlenmiştir. Önerilen yeni kayma yüzeyi bulanık mantık kontrol, yakın komşuluk ve fonksiyon atama yaklaşımları kullanılarak zamanla değişen bir parametre yardımı ile ayarlanmıştır. Elde edilen yöntemlerin analizi parametre belirsizlikleri ile sınır değerli dış bozuculara sahip ikinci derece sistem modeli üzerinde koşturulan benzetimlerle yapılmıştır. Çeşitli başarım ölçütleri kullanılarak önerilen yöntemin ulaşma zamanının azaltılmasının, bozuculara karşı dayanıklılık, yumuşak faz düzlemi yörünge hareketi gibi olumlu iyileştirmeler sağladığı gözlenmiştir.

Coordinate transformation based time-varying linear sliding surface

The aim of this study is to propose new approaches for on-line tuning of the linear sliding surface in the sliding mode controllers. The new approaches are developed for a class of second order systems on a new coordinate axes that one of which is the classical sliding surface and the other one is naturally chosen to be orthogonal to it. The control law is then modified accordingly by applying the Lyapunov stability condition. The adjustment of the linear sliding surface defined in the new coordinate axes is achieved by tuning a new parameter using three different methods. First, an adaptive sliding surface with a rotation scheme is constructed by interpreting the classical delta neighborhood approach. Next, the rotation process is achieved by using a fuzzy tuning mechanism that uses the new coordinates as its input variables and generates an incremental change in the new parameter value as an output. Thirdly, a time-varying function is used for defining the new parameter. Numerical simulations are performed on a second order system model with parameter uncertainties and bounded external disturbance. The new approaches are compared with the sliding mode controller having a constant sliding surface and two sliding mode controllers having a continuously time-varying sliding surface. Results have shown improved performances of the proposed approaches in terms of a decrease in the reaching and settling times, robustness to disturbances and smooth phase plane trajectory.

___

  • Bartoszewicz, A., (1995). A comment on 'A time varying sliding surface for fast and robust tracking control of second-order uncertain systems', Automatica, 31, 12, 1893-1895.
  • Bartoszewicz, A., (1996). Time-varying sliding modes for second order systems, IEE Proceedings- Control Theory and Applications, 143, 5, 455-462.
  • Choi, S. B., Cheong, C. C. ve Park, D. W., (1993). Moving switching surfaces for robust control of second order variable structure systems, International Journal of Control, 58, 1, 229-245.
  • Choi, S. B., Park, D. W. ve Jayasuriya, S., (1994). A time-varying sliding surface for fast and robust tracking control of second order uncertain systems, Automatica, 30, 5, 899-904.
  • Edwards, C. ve Spurgeon, S. K., (1998). Sliding Mode Control: Theory and Applications, 237sh., Taylor & Francis, London, UK.
  • Ha, Q. P., (2001), Integration of fuzzy logic and sliding mode in variable structure control, Proceedings, 5th World Multi-Conference on Systems, Cybernetics and Informatics, 59-64, Orlando, Florida, USA.
  • Ha, Q. P., Rye, D. C. ve Durrant-Whyte, H. F., (1999). Fuzzy moving sliding mode control with application to robotic manipulators, Automatica, 35, 607-616.
  • Hung, J. Y., Gao, W. ve Hung, J. C., (1993). Variable structure control: a survey, IEEE Transactions on Industrial Electronics, 40, 1, 2-22.
  • Kaynak, O., Erbatur, K. ve Ertuğrul, M., (2001). The fusion of computationally intelligent methodologies and sliding mode control- a survey, IEEE Transactions on Industrial Electronics, IE-48, 4-17.
  • Li, H. X., Gatland, H. B. ve Green, A. W., (1997). Fuzzy variable structure control, IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 27, 2, 306-312.
  • Liang, C. ve Zhong-ren, L., (1996). A study of fuzzy variable structure sliding mode control, Proceedings, IEEE International Conference on Systems, Man and Cybernetics, 372-377, Beijing, China.
  • O'Dell, B., (1997). Fuzzy sliding mode control, Technical Report, 22pp, ACL-97-001, Advanced Controls Laboratory Oklohama State University, School of Mechanical and Aeropspace Engineering, USA.
  • Ogata, K., (1970). Modern Control Engineering, 796pp, Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  • Song, F. ve Smith, S. M., (2000). A comparison of sliding mode fuzzy controller and fuzzy sliding mode controller, Proceedings, 19th International Conference of the North American Fuzzy Information Processing Society, 480-484, Atlanta, Georgia, USA.
  • Tokat, S., Eksin, İ. ve Güzelkaya, M., (2002a). Doğrusal zamanla değişen yeni bir kayma yüzeyi ile kayma kipli denetleyici tasarımı, Otomatik Kontrol Ulusal Toplantısı, 181-190, ODTÜ, Ankara.
  • Tokat, S., Eksin, İ. ve Güzelkaya, M., (2002b). A new design method for sliding mode controllers using a linear time-varying sliding surface, Journal of Systems and Control Engineering, 216, 455-466.
  • Tokat, S., Eksin, İ., Güzelkaya, M. ve Söylemez, T., (2003a). Sliding mode control with a nonlinear time-varying sliding surface, Transactions of the Institute of Measurement and Control, 25(2), 145-162.
  • Tokat, S., Eksin, İ. ve Güzelkaya, M., (2003b). New approaches for on-line tuning of linear sliding surface slope in sliding mode controllers, Tübitak Turkish Journal of Electrical Engineering and Computer Sciences, 11, 1, 45-59.
  • Utkin, V. I., (1983). Variable structure systems, Automatica, 9, 5-25.
  • Yu, X., Man, Z. ve Wu, B., (1998). Design of fuzzy sliding mode control systems, Fuzzy Sets and Systems, 95, 295-306.
  • Zhang, X. ve Man, Z., (2000). A new Fuzzy Sliding Mode Control Scheme, Proceedings, 3rd World Congress on Intelligent Control and Automation, 1692-1696, Hefei, China.