Kalite fonksiyonu açınımında bulanık insan kaynakları atama modeli

Personel seçimi, personel bulma süreci sonunda oluşan aday kümesinden en iyi adayın seçilmesisürecidir. Başvuran adayların potansiyel performansını tahmin etmek personel seçim sürecinin te- melini oluşturur. Ancak, personel seçiminde iş gereklerini ve bu gereklerin seviyelerini belirlemekseçim kararını etkileyen önemli bir faktördür. İş gerekleri, eğitim, deneyim, fiziksel ve zihinsel ge- rekler ile kişilik özelliklerini kapsar. İş gerekleri ve iş gerekleri seviyelerinin doğru şekilde belir- lenmemesi yanlış adayın seçilmesine sebep olur. Bu çalışmanın amacı, personel seçim sürecini, işgereklerini belirleme süreci ile birleştiren Bulanık Kalite Fonksiyonu Açınımı (BKFA) temelindebir personel seçim çatısı önermektir. Bu çatı, personel seçim kararlarındaki işe ilişkin kriterleri ta- nımlama ve performans-tahmin değişkenleri ilişkilerine yönelik hipotezlerin doğru bir şekilde geliş- tirilmesini sağlamaktadır. Önerilen modelde, iş gereklerinin seviyelerini ve personel adaylarınınniteliklerini değerlendirmeye ilişkin belirsizlikleri ve subjektiflikleri modellemek amacıyla dilsel değiş- kenler ve bu değişkenleri matematiksel olarak ifade etmek için bulanık kümeler kullanılmaktadır.Bulanık kümelerin kullanılması ile zihinsel süreçlere ve insan iletişimine ilişkin belirsizlikler ve sub- jektifliklerin önerilen modele dahil edilmesi sağlanmaktadır. BKFA çatısı altında, birinci kaliteevinde işi oluşturan görevlerin ağırlıkları Bulanık Analitik Hiyerarşi Süreci (BAHS) ile hesaplan- maktadır. Daha sonra, iş görevleri iş gereklerine çevrilmekte ve iş gereklerinin ağırlıkları eldeedilmektedir. İkinci kalite evinde ise Bulanık TOPSIS (BTOPSIS) ve Bulanık VIKOR (BVIKOR)yöntemleri uygulanarak en uygun aday seçilmektedir.

A fuzzy human resource allocation model in quality function deployment

Human resources are considered as the most im- portant assets of organizations, but very few organi- zations are able to fully use their potential. Sophisti- cated technologies and innovative practices alonecan do very little to enhance operational perfor- mance unless the requisite human resource man- agement practices are in place to form a consistentsocio-technical system. For this reason, manufactur- ing and service organizations need to carefully eval- uate their existing human resources, and developthem so that employees can effectively contribute tooperational performance improvement. Building a high performance workforce certainlystarts with hiring new personnel. Recruitment andselection are the two main phases of a hiring pro- cess. Although both are closely interrelated parts of amultistage decision process, recruiting activities gath- er applicants for jobs, and selection decisions mustthen be made to choose the subset of applicants, or theapplicant, who are most likely to succeed.This study concentrates on the selection phase whichcan be considered as a multi-criteria decision makingproblem. Personnel selection involves collecting in- formation about individuals by using one or moreselection devices or methods. The most importantproperty of an assessment method is its ability topredict future job performance or job-related learn- ing. However, it is difficult to select the most suita- ble person for a certain job unless there is a clearunderstanding of the job’s requirements in terms ofpersonnel characteristics. By identifying such re- quirements, it is possible to develop selection proce- dures that will determine whether a particular ap- plicant possesses the necessary and proper charac- teristics to carry out the tasks involved in the job.Thus, success of the personnel selection process isdependent on two basic processes: (1) determinationof personnel characteristics required to perform thejob and their levels, and (2) assessment of candi- dates. Improvement of these processes will result inimprovement of overall personnel selection process.The assessment involved in these processes are per- formed by a number of people within the organiza- tion and it is well recognized that people’s assess- ments of concepts are always subjective and impre- cise, and the linguistic terms people use to expresstheir judgments are vague. Using objective and pre- cise numbers to represent linguistic assessments are,although widely applied, not very reasonable. In es- sence, human cognitive processes, such as thinkingand reasoning and human communication are in- herently fuzzy. Thus, a more rational approach is toassign fuzzy numbers to linguistic assessments sothat their vagueness arising from mental phenomenaand human communication can be captured.This study proposes an improved personnel selectionmodel which will help to select the most suitableperson by providing a strong linkage between thecontent of the job and characteristics of selectedcandidate(s) and by involving the vagueness andsubjectivity inherent in personnel selection process- es. The proposed model assumes that there are anumber of candidates applying for a particular job(white-collar or blue-collar) and a certain numberof candidate(s) is to be selected for the job in ques- tion. In order to meet these objectives, the modelemploys Fuzzy Quality Function Deployment(FQFD) as a framework for integrating the determi- nation of required personnel characteristics and fi- nal selection processes. The use of FQFD helps todevelop hypotheses in a structured approach aboutperformance-predictor relationships tested in a spe- cific personnel selection problem. The proposedmodel also employs Fuzzy Analytical HierarchyProcess, Fuzzy TOPSIS and Fuzzy VIKOR underFQFD framework. It also allows multiple decisionmakers in the determination of personnel character- istics and final selection processes so that variouspeople within the organization who are responsiblefor or who are affected by the selection decision canbe involved in both phases of the FQFD process. The model has been applied for a real-life problemin one of the leading companies in the milk and milkproducts sector for Shift Engineer position. The re- sults of these applications show that the model candistinguish the candidates accurately with respect totheir characteristics which are assessed by the deci- sion makers involved in the personnel selection pro- cess. Since decision makers are not capable of ana- lyzing and synthesizing vast amount of job and can- didate information judgmentally, the utility of theproposed model is established.

___

  • Buckley, J.J., (1985). Fuzzy hierarchical analysis, Fuzzy Sets and Systems, 17, 3, 233-247.
  • Büyüközkan, G. ve Ruan, D., (2008). Evaluation of software development projects using a fuzzy multi-criteria decision approach, Mathematics and Computers in Simulation, 77, 464-475.
  • Chang, D.Y., (1996). Applications of the extent analysis method on fuzzy AHP, European Jour- nal of Operational Research, 95, 3, 649-655.
  • Chen, T.C., (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1-9.
  • Deng, H., (1999). Multicriteria analysis with fuzzy pairwise comparison, International Journal of Approximate Reasoning, 21, 215-231.
  • Harvey, R.J., (1991). Job analysis in Dunnette, M. ve Hough, L., eds., Handbook of Industrial & Organizational Psychology, 2, 71-163, Palo Alto, CA: Consulting Psychologists Press.
  • Kahraman, C., Buyukozkan, G. ve AteĢ, N.Y., (2007). A two phase multi-attribute decision- making approach for new product introduction, Information Sciences, 177, 1567-1582.
  • Klir, G. ve Yuan, B., (1995). Fuzzy sets and fuzzy logic: Theory and applications, Prentice Hall, Upper Saddle River, NJ.
  • Raymond, M.R., (2001). Job analysis and the speci- fication of content for licensure and certification examinations, Applied Measurement in Educa- tion, 14, 369-415.
  • Sanchez, J.J. ve Levine, E.L., (1989). Determining important tasks within jobs: A policy-capturing approach, Journal of Applied Psychology, 74, 336-342.
  • Tüysüz, F. ve Kahraman, C., (2006). Project risk evaluation using a fuzzy analytic hierarchy pro- cess: an application to information technology projects, International Journal of Intelligent Sys- tems, 21, 559-584.
  • Zadeh, L.A., (1965). Fuzzy sets, Information and Control, 8, 338-353.