İnce daneli zeminlerde örselenme
İnce daneli zeminlerde numune örselenmesi nedeniyle, numunenin alındığı zemini temsil etmediği bilinmektedir. Numune örselenmesi özellikle yumuşak zeminlerde deney sonuçlarını daha fazla etkilemektedir. Zemin mühendisliği açısından kohezyonlu zeminlerde numune örselenmesinin iki ana sebebi olduğu kabul edilmektedir. İlki, numune alımı işleminden (delme, numune alma, saklama, çıkartma vs.) kaynaklanan mekanik örselenme, ikincisi ise numunenin üzerinde gerilme boşalması sebebiyle meydana gelen örselenmedir. Zeminde gerilme boşalması nedeniyle meydana gelen örselenme zeminin maksimum kayma gerilmesini ve başlangıç kayma modülünü etkilemektedir. Bu amaçla laboratuvarda yeniden oluşturulmuş numuneler elde edilerek her bir numune için gerilme-şekil değiştirme değerleri ve başlangıç kayma modülü değerleri yardımıyla numune örselenmesinin derecesi belirlenmeye çalışılmış ve elde edilen sonuçlar karşılaştırılmıştır
Disturbance in fine grained soils
In fine grained soils; due to the sample disturbance the specimen can’t represent the soils which exist at the field. Sample disturbance effects test results especially on fine grained soils. If researchers determine the soil properties with higher precision this will reduce the all costs of the geotechnical projects. From the view point of geotechnical engineering; sample disturbance consist of two components, one associated with mechanical disturbance caused by the sampler, handling, etc. and the other is due to the stress release. It is inevitable that mechanical disturbance which occurs because of the stress release, effect especially two of soil parameters; maximum shear strength and initial shear modulus. In this work initial shear modulus and stress-strain relationships will be determined on normally consolidated and over consolidated soil specimens. Reconstituted soil samples are used for laboratory tests. Samples are consolidated at anisotropic and/or isotropic conditions, after consolidation samples were sheared These samples were assumed as normally consolidated soils at the site. Other samples are consolidated at isotropic or anisotropic conditions, after this all loads were released. After one day the sample is loaded with a lower isotropic pressure and sheared in undrained conditions. These samples are assumed as laboratory samples. Maximum shear strength and initial shear modulus of each sample are determined. This data can be used for determining the degree of sample disturbance.
___
- 1.Athanasopoulos, G.A. ve Richart, F.E., (1983). Effect of stress release on shear modulus of clays, Journal of The Geotechnical Engineering, ASCE, 109, 1233-1245.
- 2.Bishop, A.W. ve Henkel, D.J., (1957). The measurement of soil properties in the triaxial test, Edward Arnold, London.
- 3.Bowles, J.E., (1984). Physical and geotechnical properties of soils, McGraw-Hill Inc., Singapore.
- 4.Broms, B.B., (1980). Soil sampling in europa: state-of-the-art, Journal of The Geotechnical Engineering Div, ASCE, 106, 65-98.
- 5.Broms, B.B. ve Rantam, M.V., (1963). Shear strength of an anisotropically consolidated clay Journal of The Soil Mechanics and Foundation Engineering Division, ASCE, 89, 1-26.
- 6.Craig, R.F., (1992). Soil mechanics, Chapman and Hall Inc., London.
- 7.Das, B.M., (1993). Principles of soil dynamics, PWS-KENT Publ. Comp., Boston.
- 8.Drnevich, V.P. ve Massarsch, K.R., (1979). Sample disturbance and stress-strain behavior, Journal of The Geotechnical Engineering Division, ASCE, 105, 1001-1016.
- 9.Graham, J. ve Lau, S.L.-K., (1988). Influence of stress-release, disturbance, storage and consolidation procedures on the shear behavior of reconstituted underwater clay, Geotechnique, 38, 279-300.
- 10.Hardin, B.O. ve Black, W.L., (1968). Vibration modulus of normally consolidated clay, Journal of The Soil Mechanics and Found. Engineering Division, ASCE, 94, 353-369.
- 11.Hardin, B.O. ve Drnevich, V.P., (1972). Shear modulus and damping in soils: design equations and curves, Journal of The Soil Mechanics and Foundation Engineering Division, ASCE, 98, 667-692. 12.Head, K.H., (1997). Manual of soil laboratory testing, John Wiley & Sons, Chichester. Hvorslev, M.J., (1949). Subsurface exploration and sampling of soils for Civil Engineering purposes, Report for the Committee on Sampling and Testing, Soil Mechanics and Foundation Engineering Division, ASCE, New York.
- 13.Kirkpatrick, W.M. ve Khan, A.J., (1984). The reaction of clays to sampling stress relief, Geotechnique, 34, 29-42.
- 14.Koutsoftas, CD. ve Fischer, J.A.,(1980). Dynamic Properties of two marine clays, Journal of the Geotechnical Engineering Division, ASCE 106, 645-657.
- 15.Lacasse, S., (2001). Parameters for design in clays, International Jubilee Papers in Honour of Prof. Dr. Ergün TOĞROL, 54-75, İ.T.Ü. Press, Istanbul.
- 16.Ladd, C.C. ve Foott, R., (1974). New design procedure for stability of soft clays, Journal of The Geotechnical Engineering Division, ASCE, 100, 763-786.
- 17.Özüdoğru, K., (1981). Laboratory shear modulus and damping from torsional vibration soil tests, Norwegian Geotechnical Institute Internal Report, 51513-1, Oslo.
- 18.Skempton, A.W. ve Sowa, V.A., (1963). The behaviour of saturated clays during sampling and testing, Geotechnique, 13, 269-290.
- 19.TS-1901, (1987). İnşaat Mühendisliğinde sondaj yolları ile örselenmiş ve örselenmemiş numune alma yöntemleri, Türk Standartları Enstitüsü, Ankara.
- 20.Van Impe, W.F. ve Van den Broeck, M., (1988). Free torsion pendulum testing, 2nd Young Geotechnical Engineer's Conference, Oxford, England, 131-137.
- 21.Zeevaert, L., (1967). Free vibration torsion tests to determine the shear modulus of elasticity of soils. Proceedings of The Third Panamerican Conference on Soil Mech. and Foun. Engineering, Caracas, Venezuela, 125-138.