Elastik zemin üzerindeki çubuk uygulamalarının serbest ve nonlineer titreşim analizi

Bu çalışmada, değişik mesnet koşullarında iki parametreli bütünüyle ve kısmi elastik zemin üzerinde üniform kalın çubuk elemanının serbest ve nonlineer titreşimlerinin analitik ve deneysel analizi yapılmıştır. Nonlineer analizde, sadece eğilme hareketi 6 serbestlik dereceli kalın çubuk elemanı serbest titreşimleri incelenmiştir. Çubukların titreşim analizi, değişik mesnet koşullarında boyuna uzama da hesaplara dahil edilerek incelenmiştir. Elastik zemin; Winkler zemin modülü ve kayma zemin modülü ile isimlendirdiğimiz iki modülle karakterize edilen sabit iki-parametreli model olarak temsil edilir. Kayma deformasyonu, zemin rijitlik parametreleri ve kısmi elastik zemin etkilerinin yanında, nonlineer eğilme, boyuna-eğilme girişimi ve büyük yer değişimlerinden kaynaklanan nonlineer etkiler incelenmiştir. Bu analizden elde edilen analitik ve deneysel sonuçlar arasında iyi bir uyumun olduğu da gözlenmiştir.

The analysis of free and nonlinear vibrations of beam applications on elastic foundation

In the present work, the analytical and experimental analysis of free and nonlinear vibrations of uniform thick beam element on two-parameter full and partial elastic foundation is made. In the nonlinear analysis, free vibrations of 6 degrees of freedom thick beam element are only investigated. The vibration analysis is also made considering axial displacement of the beam in different end conditions. The elastic foundation is idealized as a constant two-parameter model characterized by two moduli, i.e. the Winkler foundation modulus k and the shear foundation modulus kG. In the case kG=0, this model reduces to the Winkler model, i.e. the elastic foundation is idealized as a constant one-parameter model. The effects of shear deformation; foundation stiffness parameters and partial elastic foundation are examined. Nonlinear vibrations of the beam are calculated by considering all nonlinear effects. In the nonlinear vibration analysis, nonlinear bending, longitudinal-bending and large bending displacement effect are included to nonlinearity. In addition to these effects, nonlinear bending, longitudinal and large bending displacement are examined as nonlinear effects. The results obtained from the analytical and experimental studies are presented by showing in tables and graphs and their importance in design is discussed. The numerical results obtained from this analysis are compared with the exact or available solutions in the literature, whereever possible. The analytical and experimental results and comparisons show the effectiveness of the proposed method.

___

  • 1.Bahçıvan, A. ve Karadağ, V., (1999). Vibration frequencies and dynamic stability of thick beams by finite element method, Proceedings, The ASME ETCE'99 conference and exhibition, Houston, Texas, USA.
  • 2.Bahçıvan, A. ve Karadağ, V., (2002). Vibration analysis of thick beams on two parameter elastic foundation by finite element method, Proceedings, ETCE2002 ASME Engineering Technology Conference on Energy, Houston, Texas, USA.
  • 3.De Rosa, M. A., (1993). Stability and dynamics analysis of two-parameter foundation beams, Computers and Structures, 49, 341-349.
  • 4.De Rosa, M. A., (1995). Free vibrations of Timoshenko beams on two-parameter elastic foundation, Computers and structures, 57, 1, 151-156.
  • 5.Doyle, P.F. and Pavlovic , M. N., (1982). Vibration of beams on partial elastic foundations, Earthquake Engineering and Structural Dynamics, 10, 663-674.
  • 6.Eisenberger, M. ve Yankelevsky, D.Z. and Adin, M.A., (1985). Vibrations of beams fully or partially supported on elastic foundations, Earthquake Engineering and Structural Dynamics, 13,651-660.
  • 7.Eisenberger, M. ve Clastornik, J., (1987). Beams on variable two-parameter elastic foundation, ASCE Journal of Engineering Mechanics, 113, 10, 1454-1466.
  • 8.Fagan, M. J., (1992). The finite element analysis: Theory and practise, Longman Scientific Technical, New York, USA.
  • 9.Foda, M.A., (1995). Analysis of large amplitude free vibrations of beams using KBM method, Journal of Applied Engineering Science, Cairo university, 125-128.
  • 10.Fada, M.A., (1995). On nonlinear vibrations of a beam with pinned ends, Journal of Engineering Science, King Saud University, 7,1, 93-107.
  • 11.Foda, M.A., (1999). Influence of shear deformation and rotatory inertia on nonlinear free vibration of a beam with pinned ends, Computers and Structures, 71, 663-670.
  • 12.Franciosi, C. ve Masi, A., (1993). Free Vibrations of foundation beams on two-parameter elastic soil, Computers and Structures, 47, 419-426.
  • 13.Hou, Y.C. ve Tseng, C.H., (1996). A new high order f non-uniform Timoshenko beam finite element on variable two-parameter foundations for vibration analysis, Journal of Sound and Vibration, 191, 1, 91-106.
  • 14.Huang, T.C., (1961). The effect of rotatory inertia Wd of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions, Journal of Applied Mechanics, 28, 579-584.
  • 15.İpek, M., (1979). A mass matrix for beam element derived from dynamic considerations, Research Report 79-03, Dpt. Of Architecture Faculty of England, England.
  • 16.Karadağ, V., (1996). Dynamic stability analysis of Timoshenko beams with geometric nonlinearity for three dimensional motion, Proceedings, The ASME ESDA'96 conference, Structural Dynamics, Vibration, and Buckling, 1130-118, Montpellier, France.
  • 17.Knight, C. E., (1993). The finite element method in mechanical design, Pws-kent Publishing, Boston, USA.
  • 18.Lewandowski, R., (1987). Application of the Ritz method to the analysis of non-linear free vibrations of beams, Journal of Sound and Vibration, 114, 1,91-101.
  • 19.Lewandowski, R., (1994). Nonlinear free vibrations of beams by the finite element and continuation methods, Journal of Sound and Vibration, 170, 5, 577-593.
  • 20.Lin, Y.H. and Tsuai, Y.K., (1996). Nonlinear free vibration analysis of Timoshenko beams using the finite element method, Journal of the Chinese Soc. of Mechanical Engineering, 17, 6, 609-615. 21.Mei, C, (1985). A finite element method for non¬linear forced vibrations of beams, Journal of Sound and Vibration, 102, 3, 369-380.
  • 22.Mei, C, (1986). Discussion of finite element formulations of nonlinear beam vibrations, Computers and Structures, 22, 1, 83-85.
  • 23.Mously, M. E., (1999). Fundamental frequencies of Timoshenko beams mounted on Pasternak foundation, Journal of Sound and Vibration, 228, 2, 452-457.
  • 24.Petyt, M., (1991). Introduction to finite element vibration analysis, Cambridge University Press, Cambridge, England.
  • 25.Przemieniecki, J.S., (1968). Theory of structure analysis, McGraw Hill, New York, USA.
  • 26.Rap, G.V. ve Raju, K.K., (1976). Nonlinear vibrations of beams considering shear deformation and rotatory inertia, AIAA Journal, 14, 5, 685-687.
  • 27.Rao, B., (1992). Large-amplitude vibrations of simply-supported beams with immovable ends, Journal of Sound and Vibration, 155, 523-527.
  • 28.Severn, R. T., (1970). Inclusion of shear deformation in the stiffness matrix for a beam element, Journal Of Strain Analysis, 5, 239-241.
  • 29.Shirima, L. M. ve Giger, M. W., (1992). Timoshenko beam element resting on two-parameter elastic foundation, ASCE J. of Engineering Mechanics, 118, 2.
  • 30.Singh, G., Rao, G.V. ve Iyengar, NGR., (1990). Re-ihvestigation of large-amplitude free vibrations of beams using finite elements, Journal of Sound and Vibration, 143, 351-355.
  • 31.Srirangarajan, H.R., (1994). Nonlinear free vibrations of uniform beams, Journal of Sound and Vibration, 175, 3, 425-427.
  • 32.Valsangkar, A.J., (1987). Vibrations of beams on a two-parameter elastic foundation, Proceedings, Eleventh Can. Congr. Applied Mechanics, A112-Al 13, A. Edmanton.
  • 33.Valsangkar, A. J. ve Pradhanang, R. B., (1987). Free vibration of partially supported piles, ASCE Journal of Engineering Mechanics, 113, 8, 1244-1247.
  • 34.Valsangkar, A.J. ve Pradhanang, R., (1988). Vibrations of beam-columns on two-parameter elastic foundations, Earthquake engineering & structural dynamics, 16,217-225.
  • 35.Yokoyama, T., (1996). Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations, Computers and Structures, 61, 6, 995-1007.
  • 36.Yucheng, S. ve Raymond, Y.Y. L., (1997). Finite element method for nonlinear free vibrations of composite beams and plates, AIAA Journal, 35,1, 150-157.