Gemi dalga direncinde lineer olmayan etkilerin hesaplamalı olarak incelenmesi
Gemi dalga direncini doğru olarak hesaplayabilmek gemi-form dizaynı açısından vazgeçilmez bir öneme sahiptir. Bu çalışmada gemi etrafındaki akışta lineer olmayan serbest su yüzeyi sınır koşullarını kullanan bir vöntem geliştirilmiştir. İteratif bir algoritma ile çalışan bu yöntemde lineer olmayan serbest su yüzeyi koşulları, deforme olmuş serbest su yüzeyi üzerinde uygulanmaktadır. İterasyon adımlarında gemi ile serbest su yüzeyinin tam bir ara kesitinin alınması sayesinde geminin ıslak alanı gerçekle olduğu gibi alınabilmiştir. Çalışmanın sonuçlarının irdelenmesi amacıyla örnek bir gemi geometrisi (Seri 60, Cn=0.60) alınmış ve sonuçlar deneylerle karşılaştırmalı olarak gösterilmiştir. Yapılan karşılaştırmalar, geliştirilen yöntemle elde edilen sonuçların deneysel sonuçlarla uyum içerisinde olduğunu göstermektedir.
Computational investigation of non-linear effects in ship-wave resistance
Computing ship-wave resistance has an indispensable importance in hull form design, in this study to calculate ship-wave resistance more accurately a method which utilizes non-linear free surface boundary conditions for the flow around the hull is developed. In this method the free surface boundary conditions are imposed on the deformed free surface iteratively. At the iteration steps, by the help of using interface of deformed free surface and ship-hull geometry, the wetted surface involved in the compulations has been taken more realistic. Using exact wetted surface of the ship let determine the effect of the ship's geometry above the still water level on the wave resistance. To show the results of the study a reference geometry (Series 60, $C_B$=0.60) is put to the computations and the results are shown comparatively. Comparisons made show the results obtained from the method developed are close to those of obtained from the experimental studies. As an application of a hull form design problem, effects of changes in the flare geometry on the flow around the ship has been computed by using the algorithm developed. This application proves that the algorithm developed in this study can be used as a design tool for optimizing the geometry above still water level.
___
- 1-Campana, E., Lalli, F., ve Bulgarelli, U., (1989). A boundary element method for a non-linear free surface problem, International Journal For Numerical Emthods In Fluids, 9, 1195-1206.
- 2-Celebi, M. S., Beck, R. F., (1997), Geometric modeling for fully nonlinear ship-wave interactions, Journal of Ship Research, 41, 1, 1997, 17-25.
- 3-Coleman, R. M., ve Hausling, H.J., (1981). Nonlinear waves behind an accelerated transom stern, 3rd Int. Conf. Numerical Ship Hydrodynamics, Paris, France.
- 4-Çalışal, S.M., Gören, Ö., Danışman, D.B., (2002), Resistance reduction by increased beam for displacement-type ships, Journal of Ship Research, 46, 3, 208-213.
- 5-Danışman, D.B., Mesbahi, E., Atlar, M., Gören, Ö., (2002), A new hull form optimisation technique for minimum wave resistance, IMAM, Rethymnon-Greece, Paper No. 42.
- 6-Daube, O. ve Dulieu, A., (1981). A Numerical approach of the nonlinear wave resistance problem 3rd Int. Conf. Numerical Ship Hydrodynamics, Paris, Francse.
- 7-Dawson, C. W., (1977). A Practical computer method for solving ship-wave problems, Proc. 2"d Int. Conf. Numerical Ship Hydrodynamics, Berkeley, 30-38.
- 8-Gadd, G.E., (1976). A method for computing the flow and surface wave pattern around full forms, Trans, RINA, 207-220, UK.
- 9-Gadd, G.E., Hogben, N., (1965). The determination of wave resistance from measurements of the wave pattern, N.P.L. Ship Report 70.
- 10-Gören, Ö., (1993). Ayna kıçlı gemilerin Sayısal dalga direnci üzerine, I. Ulusal Hesaplamalı Mekanik Konferansı, İstanbul.
- 11-Havelock, T. H., (1928). Wave resistance, Proc. Roy. Soc. London, A 118, 24-33
- 12-Hess, J.L., ve Smith, A.M.O., (1964). Calculation of non-lifting potential flow about arbitrary three-dimensional bodies, Journal of Ship Research, 8, 2, 22-44
- 13-IIHR, (2000). Series 60 Bare Hull, Iowa University IIHR-Hydroscience and Engineering Towing Tank Web Site, http://www.iihr.uiowa.edu /~towtank/series60bare.htm
- 14-ITTC Quality Manual., (1999), Uncertainty analysis in CFD, Uncertainity assessment Methodology, 4.9-04 01-01.
- 15-Korving, C, ve Hermans, A.K., (1977). The wave resistance flow problems with a free surface, 2nd Int. Conf. Numerical Ship Hydrodynamics, Paris, France.
- 16-Lunde, J.K., (1952). On the theory of wave resistance and wave profile, Skips modell tankens meddelelse, 10, 1-123.
- 17-Michell, J. H., (1898). The wave resistance of a ship, Phil. Mag. (London), 45, 106-123.
- 18-Newman, J.N., 1976. Linearized Wave Resistance Theory, International Seminar on Wave Resistance, Tokyo/Osaka, Society of Naval Architects Japan, pp. 31-43.
- 19-Raven, H.C., (1996). A Solution method for the nonlinear ship wave resistance problem, Ph.D thesis, MARIN, Netherlands.
- 20-Tsai, C.E. ve Landweber, L., (1975) Further development of a procedure for determination of wave resistance from longitudinal-cut surface-profile measurements, Journal of Ship Research, 19,2.
- 21-Ward, L.W., (1964), Experimental determination of ship wave resistance from the wave pattern, ONR-Report,Webb Inst. of Naval Architecture, Long Island, N.Y., viii and 68 pages.
- 22-Xia, F., (1986). Numerical calculations of ship flows with special emphasis on the free surface flow, Ph.D. Thesis, Chalmers University, Göteborg, Sweden.
- 23-Sabuncu, T., (1962). Gemilerin Dalga Direnci Teorisi, İstanbul Teknik Üniversitesi, Gemi Enstitüsü Bülteni, Eğitim Neşriyatı No.l, No. 12, İstanbul.