Dinamik dalgacık ağların yük frekans denetimine uygulanması

Frekans kararlılığı açısından iki veya daha fazla sayıda güç bölgesi içeren enterkonnekte güç sistemlerinde, her bir bölgedeki üretim planlı bir güç alışverişini sürdürebilmek için gereklidir. Bu çalışmada içerisinde geri dinamikleri, ortogonal olmayan ana dalgacık aktivasyon fonksiyonları ve iç bağlantı ağırlıkları bulunan bir "Dinamik Dalgacık Ağı 'na (DDA) " dayalı yeni bir uyarlamak yük frekans denetleyicisi (YFD) tasarımı amaçlanmıştır. Bunun için bir DDA iki bölgeli bir güç sistemi örneğinde bölgeler arasına bağlanmıştır. Adaptasyon, DDA parametrelerinin ayarlanmasına dayanır. Bu da yük frekans hata masraflarını içeren bir ölçütün en aza indirilmesi ile sağlanır. Gerekli olan ölçütün ağ parametrelerine göre gradyanları, ek duyarlılık analizi ile hesaplanmıştır. Yapılan benzetim çalışmaları, bu denetim yaklaşımının geleneksel integral denetime göre daha başarılı olduğu bir iki bölgeli güç sistemi üzerinde göstermiştir.

Application of dynamics wavelet networks to load frequency control

Frequency stability is one of the stability criteria for large-scale stability of power system. In interconnected power systems with two or more areas, the generation within each area has to be controlled so as to maintain scheduled power interchange. Load frequency control scheme has two main control loops such as primary and secondary control. In primary loop, a steady state frequency error can occur forever. Secondary loop controls the active power at the tie line between areas. This paper proposes a new adaptive load frequency controller based on a "Dynamic Wavelet Network (DWN)" that has lag dynamics, non-orthogonal mother wavelets as activation function and interconnection weights. A DWN is connected between the two area power systems. The input signals of the DWN are the ACEs and their changes. The outputs of the DWN are the control signals for the two-area load frequency control. Adaptation is based on adjusting parameters of DWN for load frequency control. This is done by minimizing the cost functional of load frequency errors. The cost gradients with respect to the network parameters are calculated by adjoint sensitivity method. It is illustrated that, this control approach is more successful than conventional integral controller for load frequency control in two area systems.

___

  • Anderson, J. A., ve Rosenfeld, (1988). Neuro-computing: Foundation of Research,MYT Pres, Cambridge, MA
  • Angrisani, L., Daponte, P. ve D'apuzzo, M., (2001). Wavelet Network-Based Detection and Classification of Transient, IEEE Trans. Instrumentation and Measurement, 50, 5, 1425-1435.
  • Beaufays, F., Abdel-Magid, Y., ve Widrow, B., (1994). Application of Neural Networks to Load Frequency Control in Power Systems, Neural Networks,7, 1,183-194
  • Becerikli, Y., Oysal, Y., ve Konar, F., (2002). Modeling of Nonlinear Systems with Dynamic Wavelet Networks, Proc. Turkish Symposium on Automatic Control, 71-79, METU, Ankara
  • Becerikli, Y., Oysal, Y., ve Konar, F., (2003). On a Dynamic Wavelet Network and Its Modeling Applications, Lecture Notes on Computer Science, 2714, 710-718, Springer-Verlag.
  • Becerikli, Y., Konar, A., F. ve Samad, T., (2003). Intelligent Optimal Control with Dynamic Neural Networks, Neural Networks, 16, 251-259.
  • Chanda, D., Kishore, N. K. ve Sinha, A. K., (2003). A Wavelet Multiresolution Analysis for Location of Faults on Transmission Lines, International Journal of Electrical Power & Energy Systems, 25, 1, 59-69.
  • Chapra, S.,C. ve Canale, R., P., (1989). Numerical Methods for Engineers, McGraw-Hill, Inc.
  • Chaturvedi, D. K., Satsangi, P. S. ve Karla, P. K., (1999). Load Frequency Control: A Generalized Neural Network Approach, Int. Journal of Electrical Power Systems, 21, 6 405-415.
  • Djukanovic, M., Novicevic, M., Sobajic, D. J., ve Pao, Y. P., (1995). Conceptual Development of Optimal Load Frequency Control Using Artificial Neural Networks and Fuzzy Set Theory, ( Int. Jour. Eng. Intell. Syst. for Elec. Eng. and Communications, 3, 2, 95-108.
  • Edgar, T. F. ve Himmelblau, D. M.,(1988). Optimization of Chemical Processes, McGraw-Hill.
  • Hopfield, J. J., (1982). Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. of the National Acedemy of Sciences, 79, -2554-2558.
  • Hopfield, J. J., (1984). Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons, Proc. of the National Academy of Sciences, 81, 3088-3092.
  • Huang, S. J., Hsieh, C. T. ve Huang, C. L.,(1998). Application of Wavelets to Classify Power System Disturbances, Electric Power Systems Research, 47, 2, 87-93.
  • Huang, S. J. ve Hsieh, C. T., (1999). High-impedance Fault Detection Utilizing a Morlet Wavelet Transform Approach, IEEE Trans. Power Delivery, 14,1401-1410.
  • Kim, C, Yu, I. ve Song, Y. H., (2002). Kohonen Neural Network and Wavelet Transform Based Approach to Short Term Load Forecasting, Electric Power Systems Research, 63, 3,169-176.
  • Konar, A. F., ve Samad, T., (1992). Dynamic Neural. Networks, Technical Report SSDC-92-I 4152-2, Honeywell Technology Center, 3660 Technology Drive, Minneapolis, MN.
  • Konar, A. F., Becerikli, Y. ve Samad, T., (1997). Trajectory Tracking with Dynamic Neural Networks, Proc. of the 1997 IEEE Int. Sym. on Intel.Control (ISIC'97), İstanbul.
  • Kundur, P., (1994). Power System Stability and Control, IEEE Pres & Mc Graw Hill.
  • Liang, J., Elangovan., S. ve Devotta, J. B. X., (1998). A Wavelet Multiresolution Analysis Approach to Fault Detection and Classification in Transmission Lines, Int. Jour. Electrical Power & Energy Systems, 20, 5,327-332.
  • Mallat, S., (1989). A Theory for Multiresulation Signal Decomposition: the Wavelet Representation, IEEE Trans, on Pattern Analysis and Machine Intelligence, 11, 7, 674-693.
  • Oysal, Y., Becerikli, Y., ve Konar, A. F., (2003). Generalized Modelling Principles of a Nonlinear System with a Dynamic Fuzzy Networks, Computers & Chemical Engineering, 27,1657-1664.
  • Wood, J. W. ve Wollenberg, B. F., (1996). Power, Generation, Operation and Control, Second Edition, John Wiley and Sons.
  • Youssef, O. A., S., (2002). A Wavelet-based Approach for Protection of Generators Against Unbalanced Currents, Electric Power Systems Research, 63, 1,73-80.