Dalgacık dönüşüm tekniği kullanılarak hidrolojik akım serilerinin modellenmesi
Çalışmada işaret işleme sahasında kullanılan dalgacık dönüşümü tekniği hidrolojik akım serilerinin tahmininde kullanılmıştır, ilk olarak sürekli dalgacık dönüşümü ve global spektrum yardımı ile ölçüm serileri analiz edilmiştir. İki ayrı ölçüm istasyonuna ait akarsu akım serileri ayrık dalgacık dönüşümü uygulanarak bileşenlerine ayrılmıştır. Elde edilen bileşenler geliştirilen regresyon tipi bir model yardımı modellenmiştir. Modelde tahmin eden ve tahmin ettirici değişkenler yerine akım serilerinin ayrık dalgacık dönüşümü bileşenleri kullanılmıştır. Elde edilen sonuçlar farklı hata kriterleri ile değerlendirilmiştir. Modelleme sonuçlarında bölgenin iklim karakteristiğine uygun bileşenler arasında kurulan modellerin diğer modellere göre bir çok hata kriteri bakımından daha başarılı olduğu görülmüştür.
Modelling of streamflow series using wavelet transform technique
Even though earth science phenomena have nonstationary characteristics, they actually include many different secret periodic events occurred in different time periods. Wavelet transform gives better results than former techniques for analyzing these phenomena. In this study, a new modelling technique using discrete wavelet transform, which is a special type of wavelet transform, is presented to increase prediction performance of streamflow time series modelling as an earth science phenomena and to provide physical interpretation. Different periodic components of a streamflow series are always obtained using discrete wavelet transform. The present study differs in that discrete wavelet transform is firstly presented as a modelling technique with application on streamflow process. Instead of response and explanatory measured streamflow series in a linear regression model, discrete wavelet components of such series are used in this study. First of all, discrete wavelet components of streamflow series are analysed by continuous wavelet transform and global wavelet spectrum. Secondly, energy variation of each component of both measured series is calculated. If appropriate components obtained by discrete wavelet transform are used, the performance of streamflow models can be increased. This technique is applied to regression models, because they are simple and widely used in practical applications. Energy variation, correlation coefficients and error values of the constituted models are compared with each other. This new technique offers good advantage in streamflow modelling.
___
- Addison, P., S., Murray, K., B., Watson, J., N., (2001). Wavelet transform analysis of open channel wake flows, Journal of Engineering Mechanics, 127, 1, 58-70.
- Bayazıt, M., Aksoy, H., (2001). Using wavelets for data generation, Journal of Applied Statistics, 28, 2, 157-166.
- Bayazıt, M., (1996). İnşaat Mühendisliğinde Olasılık Yöntemleri, İTÜ İnşaat Fakültesi Matbaası, İstanbul.
- Bayazıt, M., (1998). Hidrolojik modeller, İTÜ İnşaat Fakültesi Matbaası, İstanbul.
- Daubechies, I., (1988). Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics. XLI, 909-996.
- Drago, A., F., Boxall, S., R., (2002). Use of the wavelet transform on hydro-meteorological data, Physics and Chemistry of the Earth, 27, 1387-1399.
- Gaucherel, C., (2002). Use of wavelet transform for temporal characterisation of remote watersheds, Journal of Hydrology, 269, 101-121.
- Grossman, A., Morlet, J., (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM Journal of Mathematical Analaysis, 15, 723-736.
- Korürek, M., (2000). Biyomedikal Mühendisliğinde Özel Konular, İTÜ, Elektrik-Elektronik Fakültesi ders notları, İstanbul.
- Kumar, P., Foufoula-Georgiou, E., (1993). A multicomponent Decomposition of Spatial Rainfall Fields 1. Segregation of Large- and Small-Scale Features Using Wavelet Transforms, Water Resources Research, 29, 8, 2515-2532.
- Küçük, M., Tiğli, E., Ağıralioğlu, N., (2004). Wavelet transform analysis for nonstationary rainfall-runoff-temperature processes, Conference on Water Observation and Information System for Decision Support, 25-29 May, Ohrid, FY Republic of Macedonia.
- Küçük, M., Ağıralioğlu, N., (2004). Kısa süreli Fourier ve sürekli dalgacık dönüşümü yardımıyla günlük akım verilerinin analizi, IV ulusal hidroloji kongresi ve Hidrolojide yeni teknikler semineri. 21-25 Haziran, İstanbul, Türkiye.
- Labat, D., Ababou, R., Mangin, A., (2000). Rainfallrunoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses, Journal of Hydrology, 238, 149-178.
- Lafreniere, M., Sharp, M., (2003). Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake, Alberta, Hydrological Processes, 17, 1093-1118.
- Mallat, S., G., (1989). A theory for multiresoluion signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 7, 674-693.
- Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J., (1997). Wavelet Toolbox User’s Guide, The MathWorks, Inc.
- Nason, G., Sapatinas, T., (2002). Wavelet packet transfer function modelling of nonstationary time series, Statistics and Computing, 12, 45-56.
- Polikar, R., (1999). The story of wavelets, Mastorakis, N. Physics and Modern Topics in Mechanical and Electrical Engineering, 192-197. World Scientific and Eng. Society Press.
- Saco, P., Kumar, P., (2000). Coherent modes in multiscale variability of streamflow over the United States, Water Resources Research, 36, 4, 1049-1067.
- Smith, L., C., Turcotte, D., L., Isacks, B., (1998). Stream flow characterization and feature detection using a discrete wavelet transform, Hydrological Processes, 12, 233-249.
- Torrence, C., Compo, G., P., (1998). A practical guide to wavelet analysis, Bulletin of The American Meteorology Society, 79, No. 1.
- Venugopal, V., Foufoula-Georgiou, E., (1996). Energy decomposition of rainfall in the timefrequency- scale domain using wavelet packets. Journal of Hydrology, 187, 3-27.