Çimento esaslı kompozit malzemelerin optimum tasarımı
Bu çalışmada, çelik tel narinliği ve içeriğinin eğilme halinde Çelik Tel Donatılı Betonun kırılma parametrelerine etkisi araştırılmakta ve bu parametreler optimize edilerek daha sünek ve daha düşük maliyetli beton elde edilmektedir. Optimum tasarım için, üç-düzeyli iki faktörlü tam deneysel tasarım, Tepki Yüzey Yöntemi ve çok amaçlı sayısal optimizasyon teknikleri kullanılmaktadır. Çelik telin narinliği ve içeriğinin özgül kırılma enerjisi ve karakteristik boya etkisinin belirgin olduğu sonucuna varılmaktadır. Daha sonra, agrega konsantrasyonunun betonun kırılma ve mekanik özeliklerine etkisi incelenmektedir. Kırılma enerjisinin belirlenmesi için RILEM TC 50-FMC standardına göre çentikli kirişler üzerinde üç noktalı eğilme deneyi yapılmıştır. Betonda agrega konsantrasyonunun artımı kırılma enerjisi ve karakteristik boy gibi kırılma özeliklerini belirgin biçimde iyileştirmektedir.
Optimum desing of cement-based composite materials
In this study, the main objective is to optimise the fracture parameters of Steel Fibre Reinforced Concretes for obtaining a more ductile behaviour than that of plain concrete. The effects of the aspect ratio and volume content of steel fibre on fracture properties of concrete in bending were investigated by measuring the specific fracture energy and characteristic length. For the optimum design, three-level full factorial experimental design, Response Surface Method and numerical optimisation techniques were used. The results show that the effects of fibre volume content and aspect ratio on specific fracture energy and characteristic length are significant. On the other hand, the effect of aggregate concentration on the fracture and mechanical behaviour of plain concrete under bending was investigated. For the determination of the fracture energy the three-point bending test was performed on notched beams according to the recommendation of the RILEM 50-FMC Technical Committee. Six control mixes ranging from hardened cement paste (hcp) to normal concrete were prepared in which the aggregate grading, water/cement ratio (w/c=0.316), and maximum aggregate size were kept constant, but the volume fraction of aggregate was changed as: 0.00 (hcp); 0.15; 0.30; 0.45; 0.60 and 0.68 m3/m3 (real concrete). Experimental results shows that modulus of elasticity, splitting tensile strength, net bending strength, fracture energy and characteristic length increases significantly with increasing aggregate concentration.
___
- Balaguru, P., Narahari, R. ve Patel, M. (1992). Flexural toughness of steel fibre reinforced concrete, ACI Materials Journal, 89, 6, 541-546.
- Banthia, N. ve Trottier, J.F. (1995). Concrete reinforced with deformed steel fibres. Part II: Toughness characterization, ACI Materials Journal, 92, 2, 146-154.
- Barros, J.A.O. ve Figueiras, J.A. (1999). Flexural behaviour of SFRC: Testing and modelling, Journal of Materials in Civil Engineering, 11, 4, 331-339.
- Bayramov, F., Taşdemir, C. ve Taşdemir, M.A. (2004). Optimisation of steel fibre reinforced concretes by means of statistical response surface method, Cement and Concrete Composites, (in press).
- Brandt, A,M. (1995). Cement-Based Composites: Materials, Mechanical Properties and Performance, London E & FN Spon.
- Derringer, G. ve Suich, R. (1980). Simultaneous optimization of several response variables, Journal of Quality Technology, 12, 4, 214-219.
- Eren, Ö. ve Çelik, T. (1997). Effect of silica fume and steel fibers on some properties of highstrength concrete, Construction and Building Materials, 11, 7-8, 373-382.
- Gao, J., Sun, W. ve Morino K. (1997). Mechanical properties of steel fibre-reinforced, high-strength, lightweight concrete, Cement and Concrete Composites, 19, 307-313.
- Hillerborg, A., Modeer, M. ve Peterson, P.E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6, 773-782.
- Hillerborg, A. (1983). Concrete fracture energy tests performed by 9 laboratories according to a draft RILEM recommendation, Rep. to RILEM TC 50- FMC, Rep. TVBM-3015, Lund Institute of Technology, Lund, Sweden.
- Lange-Kornbak, D. ve Karihaloo, B.L. (1996). Design of concrete mixes for minimum brittleness, Advanced Cement Based Materials, 3, 124-132.
- Lange-Kornbak, D, Karihaloo, B.L. (1998). Design of fibre-reinforced DSP mixes for minimum brittleness, Advanced Cement Based Materials, 7, 89-101.
- Myers, R.H. ve Montgomery, D.C. (2002). Response surface methodology: process and product optimization using designed experiments, New York: John Wiley & Sons.
- Neville, A.M. (1975). Properties of concrete. Pitman Publishing, London.
- RILEM 50-FMC. (1985). Committee of fracture mechanics of concrete. Determination of fracture energy of mortar and concrete by means of threepoint bend tests on notched beams, Materials and Structures, 18, 106, 285-290.
- Sarısu, F. (1996). Agrega konsantrasyonunun betonun mekanik özeliklerine etkisi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- Simon, M.J., Lagergren, E.S. ve Wathne, L.G. (1999). Optimising high-performance concrete mixtures using statistical response surface methods, in proceedings of the 5th international symposium on utilization of high strength/high performance concrete, 1311-1321, Norwegian Concrete Association, Oslo, Norway.
- Taşdemir, C., Taşdemir, M.A., Mills, N., Barr, B.I.G. ve Lydon, F.D. (1999). Combined effects of silica fume, aggregate type, and size on post peak response of concrete in bending, ACI Materials Journal, 96, 74-83.
- Taşdemir, M.A. ve Karihaloo, B.L. (2001). Effect of aggregate volume fraction on the fracture parameters of concrete: a meso-mechanical approach, Magazine of Concrete Research, 53, 6, 405-415.
- Taşdemir, M.A., İlki, A. ve Yerlikaya, M. (2002). Mechanical behaviour of steel fibre reinforced concrete used in hydraulic structures, HYDRO 2002, International Conference of Hydropower and Dams, 159-166, November 4-7 2002, Kiris-Antalya.
- Vandewalle L. (1996). Influence of the yield strength of steel fibres on the toughness of fibre reinforced high strength concrete, Proceedings, the CCMS Symposium, Worldwide Advances in Structural Concrete and Masonry, 496-505, Chicago.
- Wafa, F.F. ve Ashour, S.A. (1992). Mechanical properties of high-strength fibre reinforced concrete, ACI Materials Journal, 89, 5, 449-455.
- Yıldırım, H., Taşdemir, M.A. ve Oktar, O.N. (1995). Effect of aggregate concentration on strength and tensile strain capacity of concrete, in ERMCO- 95: 11th European Ready Mixed Concrete Congress, 471-480, Istanbul.